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Abstract

The future of wave energy converters lies in the design and realization of farms

comprising of several devices, given the level of actual power flow for the indi-

vidual devices and because of several operational issues. Therefore, not only the

hydrodynamics of individual and isolated devices should be analysed, but inter-

actions among devices within an array must also be carefully evaluated. In this

paper, the authors attempt to parameterize the behaviour of small-, medium-

and large-arrays of wave energy converters, in a particular staggered configu-

ration, at four different locations characterized by realistic wave climates. The

arrays studied in the present paper consist of heaving cylinders of different slen-

derness ratios. It turns out that for arrays of very short inter-device distances,

regardless of the cylinder and array size, interactions are strong and lead to not

negligible effects of destructive interference (total power reduction compared to

the sum of isolated devices). Under these conditions, the bigger the array, the

stronger the interactions and the higher the loss of power. However, a range

of inter-device distances, referred to as intermediate region, where the power

absorption is consistent and the interaction effect appears to be positive, has
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been found. This intermediate region is easily detectable for small arrays, but

loses its ideal characteristics with the increase of the size of the array.

Keywords: Wave energy converter, wave energy array, farm layout, wave

interaction, inter-device distance

1. Introduction

Since the awareness of the exhaustion of traditional energy resources and

the irreversible environmental impacts from fossil fuel combustion has increased,

renewable and carbon-emission-free resources have been investigated intensively,

with some resources already participating in the energy mix.5

In this respect, wave energy may become an important renewable resource,

as shown in [1], if the existing technologies develop sufficiently. Many different

concepts of wave energy converters (WECs), based on diverse working principles

(e.g. heave point absorbers, oscillating wave sure converters or pitch attenua-

tors) have been developed during the last decades, mainly focusing on individual10

devices. Heave point absorbers are floating bodies, whose horizontal extent is

much smaller than a wavelength [2]. They absorb wave energy through their

movement at the free-surface and the conversion into electrical power can be

achieved through different power take-off (PTO) systems. In detail, the hydro-

dynamic analysis of single point absorbers is usually carried out using the well15

known boundary element method (BEM) theory, because of the wide availabil-

ity of several commercial or open-source codes, such as WAMIT [3], AQWA [4]

or NEMOH [5], the relative ease of use and its appealing computational costs.

However, due to the actual power flow and high costs derived from con-

struction, installation and maintenance of WECs, it seems that the only viable20

option is to incorporate more devices into ’wave farms’. It is therefore impor-

tant to understand not only the behaviour of an isolated device, but also the

interactions among the devices in a farm.

Hydrodynamic interactions in WEC arrays have been studied since the

1970’s, when [6] introduced the concept of point absorber for array interactions25
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and [7] suggested an expression for the power absorbed by a WEC array. Dif-

ferent semi-analytical methods have been suggested to efficiently compute the

hydrodynamic interactions within WEC arrays, such as the plain-wave method

or the multiple scattering method introduced by [8] and [9]. Another alternative

is the direct matrix method presented by [10]. All the aforementioned meth-30

ods are based on the linear theory and provide exact solutions under certain

assumptions.

More recent works analyse such hydrodynamic interactions both numeri-

cally and experimentally: [11] and [12] analyse numerically the hydrodynamic

interactions as a function of different inter-device distances for different array35

configurations, including very large separating distances of over 2000m, while

[13] investigates experimentally the interactions in large arrays.Some effort has

also been dedicated in methods for array layout optimisation, for example [14]

or [15], which consider wave directionality and array layout, or a more recent

study [16], based on the hydrodynamic model recently presented by [17], consid-40

ering six different parameters to optimise the layout. [18] presents an overview

of the different methods to analyse WEC arrays and a whole section is given to

WEC array modelling techniques in [19].

So far, most of the work for the analysis of the interaction among devices in

a wave energy array has been carried out under regular wave conditions. Nev-45

ertheless, a more detailed approach is needed in order to accurately study the

hydrodynamic interactions. For this reason, there is a gradual move in the liter-

ature towards studying such interactions in spectral seas: [20] studies cylindrical

heaving bodies of different geometries in two different array configurations at the

Portuguese western coast, [21] analyses absorbed power and the optimal layout50

including sub-optimal control in WEC arrays at the European Marine Energy

Centre (EMEC), comparing results to those obtained under regular waves, and

[22] studies several different configurations using the scatter-diagram informa-

tion at Yeu Island in France.

The size of arrays may also be important, so large arrays have been studied55

in some works in the literature, such as, [23] which studies 18 SEAREV devices
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in the array, [24] which studies 25 cylinders and 25 surging barges or [25] which

studies 32 AWS devices.

[26] presents different factors that influence the behaviour of wave energy

devices in an array, including the array configuration, the inter-device distance,60

the number of devices in the array and the incident direction of the wave. How-

ever, arrays of only 2-4 WECs are investigated, which may lead to incomplete

and/or misleading conclusions. In addition, the geometry of the devices, partic-

ularly the slenderness ratio (radius/draft) in axisymmetric devices as shown in

[20], and characteristics of the incoming waves may also influence the behaviour65

of the WECs in the array.

In this paper, the influence of the slenderness and the number of devices

in a wave farm on the hydrodynamic performances is evaluated numerically in

realistic wave climates, as function of inter-device distance. Scatter diagrams

of four different locations, representative of various resource distributions, have70

been used in the analysis.

Section 2 introduces the hydrodynamic model used in the simulations, Sec-

tion 3 describes different device geometries, the array layout configuration, array

sizes and the locations, while Section 4 shows the results for each case. Finally,

conclusions are drawn in Section 5.75

2. Hydrodynamic model

The interaction between wave absorbers and fluid has very often been mod-

elled by means of the linear diffraction theory, under the assumption of inviscid

fluid and incompressible irrotational flow. In this study, linear theory has been

considered, assuming wave and body motion amplitudes to be small with respect80

to the wavelength, and allowing the formulation of the solution of the boundary

conditions and Bernoullis equation in terms of velocity potential and free sur-

face displacement. The influence of nonlinear hydrostatics and Froude-Krylov

forces for assessing the absorption of wave energy is still under investigation

in order to define appropriate ranges of validity even if evidence of their influ-85
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ence on dynamics of bodies is well-known [27]. Nevertheless, the same authors

suggest that the linearization of the free surface condition is consistent with

the basic definition of point absorber (main dimension much smaller than the

wavelength), and of course the effects are increasing with the wave amplitudes.

Similarly, nonlinear radiation effects seem to be not so relevant. For all these90

reasons (small size of the device, small amplitudes, minor effects of nonlinear

radiation), the linear theory seems to be a good choice for identifying the main

characteristics of the interactions among devices, without no major impact on

accuracy.

According to [28], indeed, when the bodies are large enough, the flow remains95

attached to the surface, and therefore, the resulting force on the body can be

performed by integration of the pressures. In such cases, Froude-Krylov forces

and diffraction and radiation forces can be used for the estimation of forces.

When not applicable, other models for the fluid structure interactions should

be used, in order to include viscous effects (for example, Morison equation,100

including viscous drag force, as an inertial term) or proceed to solve full Navier

Stokes equations by means of Computational Fluid Dynamics (CFD), which will

make the problem very cumbersome from the computational point of view.

In particular, the diffraction model can be applied either when the dimen-

sionless Keulegan-Carpenter (KC) number is lower than a threshold value, with105

this threshold generally set to the value of 6, or -following an entirely equivalent

interpretation- when the diffraction parameter πD
L is greater than 0.5, where D

is the significant dimension for the body (i.e. the diameter for a vertical cylinder)

and L is the wavelength. Essentially, following [28], from mild to moderate sea

states the linear diffraction model can be applied. Even in extreme sea states,110

viscous drag forces are negligible when the ratio H
D is lower than 2. Therefore,

for the case studies in the present paper, the drag effect is almost negligible, and

only the inertial term could be taken into account for the estimation of forces,

even when the Morison equation should be used.

All the above considerations yield to the conclusion that diffraction forces115

cover all the major effects on forces, given the occurrence matrices and scatter
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diagrams in Figure 4.

Hydrodynamic coefficients are in this case obtained by using the commercial

code AQWA [4]. Mesh density for the simulations has been decided after a mesh

convergence study for an isolated device, where the best compromise between120

accuracy and computational costs was found to occur using a mesh of 2016

nodes and 504 panels. The same number of nodes and panels is used for all

simulations. In such simulations, a range of 50 frequencies between 0.03 and

2 rad/s was analysed, which covers the vast majority of the exploitable ocean

waves.125

In the case studies, waves are modelled as 2D long-crested cylindrical waves,

i.e. a unidirectional spectrum without any spreading factor is used in all the

simulations, and the incoming waves are always perpendicular to the main direc-

tion of array. In undisturbed field, in general, the effects of directional spreading

becomes particularly relevant in case of nonlinear waves and shallow water (see130

[29]). As a matter of fact, the hydrodynamic performance of the array should

depend on the incident wave direction and taking into account a directional

spreading function may reduce the final power output of the array especially

if the devices are aligned with the mean wave direction, as noticed by [20]].

However, given the configuration of the layout of devices studied in this work135

and the linearity of the wave model adopted, it is reasonable to consider those

effects to be of smaller entity and they have been not taken into account within

the scope of this work.

2.1. Single-device

Once hydrodynamic coefficients are calculated, the equation of motion in140

frequency-domain is obtained from

− ω2(M + A(ω))X̂ + jω(B(ω) + BPTO)X̂ + KHX̂ = F̂e(ω) (1)

where M is the mass, A(ω) the added-mass, B(ω) the radiation damping, X̂

the position of the body, ω the wave frequency, KH the hydrodynamic stiffness,
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BPTO the damping value of the PTO force, F̂e(ω) the excitation force and j

the denotes complex number (j =
√
−1). Since a linear system is assumed, if145

sinusoidal waves are considered, motion is also a sinusoidal function that can

be written as a function of time: x(t)=Re(X̂ejωt). The same can be applied

to the forces. The PTO is modelled as a linear damper and is optimised for

each cylinder and sea-state. The absorbed power, Pi(ω), over one wave period

is calculated as in Eq.(2) for regular waves and Eq.(4) for irregular waves [30].150

Pi(ω) =
1

2
BPTOω

2 | δi |2 (2)

where δi is the normalised amplitude of the oscillation in heave, δi = X/H,

being H the wave amplitude. To evaluate the power absorption under irregular

waves, the energy (density) spectrum S(ω) can be defined as follows,

S(ω) =
1

2

A2
sp(ω)

dω
(3)

where Asp(ω) is the wave amplitude spectrum and the power absorption can be

given as155

Pir =

∫ ∞
0

2Pi(ω)S(ω)dω (4)

For irregular waves, it is interesting to analyse the annual mean power,

calculated by using the wave data statistics for a given location as a function of

the significant wave height (Hs) and peak period (Tp),

〈Pi〉 =
∑

(Hs,Tp)

PirC(Hs, Tp) (5)

where C(Hs, Tp) is the occurrence of each peak period and significant height in

the corresponding location. The same method suggested in the present paper160

has been used in different studies in the literature to evaluate the power absorp-

tion of WEC arrays in irregular waves [11, 20]. However, this methodology is

not unique in the literature. For example, [31] suggests a different procedure to

evaluate power absorption under irregular waves including wave directionality.
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2.2. Array of several devices165

For the case of N devices in an array, Eq. (1) can be easily extended by

introducing matrix notation

− (M̃ + Ã(ω))ω2X̂ + (B̃(ω) + B̃PTO(ω))jωX̂ + K̃HX̂ = F̃e(ω) (6)

where Ã and B̃ are NxN symmetric matrices (N being the number of devices in

the array, as a single degree of freedom is considered for each device), M̃ and

K̃H are diagonal matrices of the same order as Ã and B̃, and X̂ and F̃e are170

Nx1 vectors. Matrices Ã and B̃ are symmetric because cross values represent

hydrodynamic interaction studied in pairs, where the effect of the device i on

the device j and vice versa are the same (aij = aji).

Figure 1: Staggered configuration of the 5 device array

Figure 1 illustrates the case of an array with 5 devices. Hydrodynamic

coefficients obtained with the AQWA code for the case of an isolated device175

and the case with 5 devices are shown in Figure 2. Cylinders of slenderness
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ratio (radius/draft) equal to 1 are used in both isolated and 5-device array

shown in Figure 2, where the inter-device spacing in the array is of 5 diame-

ters (d=5D∼125m, where D is the diameter of the cylinder). Figure 2 shows

that terms of the main diagonal in the matrix are similar to the coefficients of180

the isolated case, except for the small fluctuations, which appear due to the

interaction in the array.

The symmetry of the layout configuration illustrated in Figure 1, makes the

coefficients to be symmetric with respect to the y axis (1=3 & 4=5). Therefore,

hydrodynamic coefficients for the devices 1 and 3, and 4 and 5 in the array are185

identical, as shown in Figure 2.

Time average absorbed power by the array of N devices is calculated as

follows in regular waves,

Parray(ω) =
1

2
ω2Re(δ̂i ∗ B̃PTO δ̂i) (7)

where, ∗ expresses complex conjugate transpose between B̃PTO, a diagonal ma-

trix, and δ̂i, a Nx1 vector.190

Power absorption of arrays subject to irregular waves is calculated in the

same way as for single-devices following Equations (4) and (5), where the ab-

sorbed power (Pi) in Equation (4) is given by Equation (7). All the hydro-

dynamic coefficients are obtained by means of the Ansys AQWA software, ac-

counting for the mutual interactions within the array.195

In this case, the PTO coefficient (BPTO) is the same for all the devices in the

array, as [20] reported no significant improvement is obtained by individually

optimising the PTO coefficient of each device. So B̃PTO diagonal matrix can

be replaced by the corresponding BPTO value for the isolated device and an

identity matrix (I) of the adequate order. The BPTO coefficient is optimized200

for each sea-state and cylinder type, as in the case with a single device.

2.2.1. Gain factor (q)

In the case of WEC arrays, the gain- or q-factor allows for the study of

absorbed power variations in percentage terms, between that for an isolated
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Figure 2: Hydrodynamic coefficients for a 5-device array comprises cylinders of ratio equal to

1 and inter-device spacing of 5 diameters, compared to the isolated case: added-mass (top),

radiation damping (middle) and absolute value of the excitation force (bottom)
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device (Pisolated) and those in an array (Parray) as follows,205

q =
Parray

NPisolated
(8)

where, N is the number of devices, Parray is the total time-averaged absorbed

power by the array and Pisolated is the time-averaged absorbed power by the

isolated device.

That way, the q-factor allows for comparison between the performance of

arrays of different number of devices. This concept was first introduced by [6]210

and [7] in the late 1970’s when analysing WEC arrays and has been used by

several studies, such as [11] or [20], and provides a simple measure of the effect

of hydrodynamic interactions in a WEC array in terms of power absorption.

When q >1, power absorption of the whole array is bigger than the power

absorption of an isolated device multiplied by the number of devices of the array.215

Thus, the interaction among the devices has positive effects and is known as

constructive. In the opposite case, when q <1, the interactions are negative and

known as destructive.

Although it is possible to achieve constructive interaction theoretically under

determined assumptions, it seems not to be realistic with real sea-states, due220

to different limitations and other aspects neglected in the theoretical analysis

(such as nonlinear viscous multi-directional waves, nonlinear computation of

hydrodynamic forces, realistic PTO models or realistic control strategies). That

is why some authors [32] suggest that the goal of layout optimisation should be

to minimize the destructive interaction.225

3. Numerical examples

3.1. Device Geometry

A vertical cylinder oscillating in heave has been chosen to represent the WEC

geometry, in order to simplify the analysis, based on the dimensions of the new

CETO 6 device [33]. However, in order to better analyse the behaviour of230

heaving cylinders in arrays, cylinders with different geometrical characteristics
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(I, II and III) have been studied in the simulations, using three slenderness

(radius/draft) ratios: 0.5 (I), 1 (II) and 2 (III). To avoid scale effects and allow

for a fair comparison, the masses of the three types of cylinders are kept the

same, constraining the dimensions of the cylinders. Table 1 provides full details235

of the devices.

Table 1: Geometrical characteristics of the devices

device Radius [m] Draft [m] Mass [Kg] T0 [s]

I 10 20 6.45·106 10.2

II 12.6 12.6 6.45·106 8.83

III 15.9 7.9 6.45·106 7.93

The behaviour of different cylinders is studied by analysing response am-

plitude operators (RAOs). Figure 3 shows the RAOs in heave of each type

of cylinder with respect to wave frequency, where the maximum amplitude in-

creases as the slenderness ratio decreases. The RAOs in Figure 3 include the240

effect of the power take-off. Hence, the more slender the cylinder is, the bigger

its response to the waves is. However, an increase in response leads to nar-

rower ranges of frequencies where the device responds. For all these reasons,

the optimal ratio cannot be identified unequivocally at first blush.

The absorbed power of each type of cylinder is calculated by using annual245

mean power in irregular waves, as shown in Section 2, and results are shown in

Table 2 for the locations presented in Section 3.3. The Bretschneider spectrum

is used to represent conditions at all locations in order to simplify the study,

as no more precise information is available about the spectral shape for each

location.250

Note that the cylinder III appears to the optimal one, regardless of the

location and the wave characteristics, in agreement with results reported in

[34].
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Figure 3: RAOs for the three different device geometries

Table 2: Absorbed power of isolated devices for each device type and location

Annual mean absorbed power [kW]

device Belmullet Lisbon BIMEP SEMREV

I 220 133 75 57

II 381 211 123 90

III 543 305 175 131

3.2. Array layout and sizes

In this paper, a single array layout is used: the staggered configuration. De-255

vices of two consecutive rows are implemented in alternating positions, by hor-

izontally displacing one of the two consecutive rows. That way, strong masking

effects can be avoided as demonstrated numerically by [22] and experimentally

by [13]. The horizontal (x) and vertical (y) inter-device spacings are identical

in the arrays used in this paper. An example of such an array with 5 devices is260
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illustrated in Figure 1.

Regarding the size of the arrays, it seems obvious that the more devices are

in the array, the stronger the interactions are, as demonstrated in [35]. However,

this work only studies arrays up to 10 devices, which is considered by the authors

of this paper to be a small array, since the future of wave energy devices appears265

to depend on farms with tens of devices, or perhaps hundreds, as mentioned by

the some developers [36]. Therefore, it is interesting to analyse the effect of

the hydrodynamic interactions in arrays of different number of devices, and

consequently, different sizes.

In this paper, three array sizes are defined: small-, medium- and large-270

array. Generally, small arrays are considered those containing less than 10

devices, medium-size arrays consist of between 10 and 30 devices and large

arrays include more than 30 devices, respecting the configuration illustrated in

Figure 1 in all the cases. The goal of defining small, medium and large arrays

is to analyse the evolution of the interaction through the different sizes. The275

exact number of devices used in small-, medium- and large-size arrays is 5, 18

and 39, respectively.

3.3. Locations

In order to cover a wider spectrum of the performance of wave energy devices,

four different locations with different wave power resources are analysed in this280

study.

Table 3 shows the main characteristics of each location, while Figure 4 il-

lustrates spectra occurrences as function of Hs and Tp, and the geographical

position of each location.

T ′p and H ′s are respectively the peak period and significant height with the285

highest frequency of occurrence at each location and λ′ is the wavelength cor-

responding to the peak period with the highest frequency of occurrence. J is

the mean annual incoming wave energy per meter of wave front, obtained by

multiplying the wave power resource (Pwave) of each sea-state by its statisti-

cal probability value, and summing all the sea-states of the scatter-diagram as290
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Figure 4: Different locations for the analysed arrays and their scattered diagrams

Table 3: Locations and corresponding spectral characteristics

Location T ′p [s] H ′s [m] λ′ [m] J [kW/m]

Belmullet 11.3 3.5 200 78

Lisbon 8.75 1.25 120 38

BIMEP 8.5 1.5 110 22

SEMREV 10 1 160 15

follows,

J =
∑

(Hs,Tp)

Pwave(Hs, Tp)C(Hs, Tp) (9)

where the wave power resource of each sea-state is calculated from Equation

(10) as shown in [30],

Pwave =
ρg2A(ω)2

4ω
(10)

where ρ is the water density and g the acceleration due to gravity.

The selection of the test-sites is made with the aim of having as wide a295

representation of different wave power resources as possible.
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4. Results

Results are provided in terms of the previously described q-factor, since it

is the parameter that best describes the hydrodynamic interaction in arrays.

Hence, the impact of slenderness and array size in wave farms is studied in300

different realistic wave climates as a function of inter-device distance.

Q-factor values are obtained following Equation (8), where, in the present

paper, Parray represents the annual mean power absorbed by the array and

Pisolated the annual mean power absorbed by an isolated device, for all the

different array configurations and locations. The annual mean power is obtained305

in all the cases using Equation (5).

Several different inter-device distances are analysed, which are normalised

against the diameter of the device (D): from 2D to 60D, with an increment of

2Ds between two consecutive simulations, for small- and medium-arrays; and

from 2D to 100D, with the same resolution, for large-arrays. Using normalised310

values, a fair comparison between devices is guaranteed.

Table 4: Power absorption and hydrodynamic interaction characteristics of 5-device arrays

Belmullet Lisbon BIMEP SEMREV

device Pisol qM qm Pisol qM qm Pisol qM qm Pisol qM qm

I 1100 1.04 0.93 662 1.04 0.94 372 1.06 0.92 283 1.03 0.95

II 1907 1.03 0.95 1056 1.03 0.95 614 1.03 0.93 541 1.02 0.96

III 2715 1.05 0.95 1525 1.05 0.94 875 1.06 0.93 655 1.04 0.94

Results are divided into three main groups, analysing the behaviour of each

array size separately.

4.1. Small farms

Farms of up to 10 devices are considered as small farms. In this paper, small315

farms are represented by arrays of 5 devices implemented in two rows, three in

the front and two in the back. Figure 1 illustrates the configuration of such a

small array.
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Table 4 presents the main information to analyse hydrodynamic interactions

in small farms, for different devices and wave climates. The variables used in320

the table are described as,

• Pisol: Power of the array in kW if all the devices of the arrays were isolated

devices;

• qM : The gain-factor value related to the inter-device distance in which

power absorption is maximum; and325

• qm: The gain-factor value related to the inter-device distance in which

power absorption is minimum.

The behaviour of single-devices is repeated in small arrays, where power

absorption increases with the slenderness ratio. The effect of the wave climate

is significant with respect to the absorbed power rate, but has practically no330

influence on the hydrodynamic interaction in an array. The hydrodynamic in-

teraction is rather low in small farms, with a maximum impact of about 10%

in all the cases, calculated by comparing the maximum and minimum values of

the q-factor parameter in each case.

Analysing the hydrodynamic interaction in small farms as a function of the335

inter-device distance, the location where such interaction is maximum has been

chosen: the BIMEP test site. Figure 5 shows q-factor values at each inter-device

distance for the three devices defined in Section 3.1.

It is important to note in Figure 5 that markers are exact q-factor values at

each inter-device distance, while lines represent the trend of the q-factor through340

the different inter-device distances. These trend lines are obtained by using the

smoothing spline method [37], where the R-square parameter of the fitting is

always over 0.8. The horizontal black line q = 1 represents the isolated case

with neutral interactions or no interactions.

Hydrodynamic interactions with short inter-device distances are mostly de-345

structive and highly inconsistent. Consequently, such short distances should

be avoided. As the inter-device distance increases, hydrodynamic interactions
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Figure 5: q-factor as function of normalised inter-device distance at BIMEP for small farms

of different slenderness ratios.

become more consistent, especially for the device I, and constructive. Finally,

with long inter-device distances, hydrodynamic interactions appear to vanish

and devices in the farm behave as isolated devices.350

Therefore, one can note three different regions with different interaction

characteristics as a function of inter-device distances:

• Short inter-device distances: Mainly destructive and highly fluctuating

hydrodynamic interactions.

• Intermediate inter-device distances: Constructive and relatively consistent355

hydrodynamic interactions.

• Long inter-device distances: Neutral and mostly consistent hydrodynamic

interactions.
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Table 5: Power absorption and hydrodynamic interaction characteristics of 18-device arrays

Belmullet Lisbon BIMEP SEMREV

device Pisol qM qm Pisol qM qm Pisol qM qm Pisol qM qm

I 4523 1.05 0.85 2385 1.05 0.86 1340 1.08 0.84 1020 1.05 0.88

II 6866 1.04 0.81 3801 1.05 0.80 2209 1.07 0.77 1625 1.04 0.82

III 9778 1.06 0.73 5484 1.06 0.72 3146 1.09 0.71 2362 1.05 0.73

Trend curves clearly illustrate the three regions and highlight the differences

between the three types of devices. Since constructive interaction and con-360

sistency are characteristics that WEC developers want to exploit, inter-device

distances of the intermediate-region seem to be the most adequate.

The lower the slenderness ratio, the more consistent the interaction is. How-

ever, the desirable inter-device region appears to start with longer inter-device

distances. In contrast, the higher the slenderness ratio is, the more constructive365

interactions are in the intermediate region, but the stronger the fluctuations

become.

Similar trends have been presented for small arrays [22, 26, 20], paying es-

pecial attention to the constructive peaks. However, the aforementioned three

regions have never been identified so far in the literature. Very little attention370

was paid also to the effects of the array size or the slenderness of the devices in

the array, as well as realistic wave climates.

4.2. Medium farms

Arrays of 18 devices, implemented in four rows following the staggered con-

figuration illustrated in Figure 1, are used as medium-size farms. In order to375

compare the impact of hydrodynamic interactions in medium farms with the im-

pact in small farms, the situations studied in small farms are again reproduced

with 18 devices: devices of three slenderness ratios and wave climate data from

four different locations.

Table 5 presents the main characteristics for the study of hydrodynamic380

interactions in medium farms. Regarding hydrodynamic interactions, differences
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between minimum and maximum q-factor values are considerably bigger for

medium farms, with maximum values about 40%. The influence of the location

on the behaviour of the array appears again to be irrelevant.

Figure 6: q-factor as function of normalised inter-device distance at BIMEP for medium farms

of different slenderness ratios.

Figure 6 illustrates q-factor values for medium farms as a function of inter-385

device distance. In this case, fluctuations among consecutive simulations appear

much stronger, rapidly moving from destructive to constructive interactions.

However, trend curves still keep the desirable shape where the three regions

mentioned previously in Section 4.1 are distinguishable. In contrast, the ideal

characteristics of the intermediate region found in small farms, where interac-390

tions are constructive and mostly consistent, appear to weaken due to these

strong fluctuations, especially in the case of the device I.

The short inter-device distances region in medium farms remains highly

inconsistent and even more destructive than in small farms. The higher the
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slenderness ratio, the stronger the destructive interaction is with very short395

inter-device distances. Nevertheless, similarly to the small farms, the interme-

diate region appears with shorter inter-device distances for devices with higher

slenderness ratios.

4.3. Large farms

The impact of hydrodynamic interactions has been demonstrated to increase400

with the size of the array. However, such impact does not increase linearly with

the array size, as happens with small and medium farms, but may experience a

saturation-like effect with large arrays.

Therefore, an array formed by 39 devices is studied. Since the computational

effort to run such a large array is extremely high, a single slenderness ratio has405

been chosen. Although the highest ratio permits for higher power absorption,

other aspects must also be considered when designing a WEC. WEC developers

tend to prefer intermediate solutions (r = 1), as shown in [20] or [34], so the

authors consider devices of type II for the study of large arrays.

Table 6: Power absorption characteristics of 39-device arrays using only the intermediate

cylinder slenderness ratio (r = 1).

Belmullet Lisbon BIMEP SEMREV

device Pisol qM qm Pisol qM qm Pisol qM qm Pisol qM qm

II 14876 1.08 0.67 8235 1.07 0.67 4787 1.08 0.62 3521 1.06 0.68

Table 6 illustrates that hydrodynamic interactions are stronger in large ar-410

rays, with maximum values of about 50%, mainly due to stronger destructive

interactions with very short inter-device distances. However, while the farm

doubles the number of devices (increment of 100%), the interaction only in-

creases 10%. Thus, a saturation-like effect has been demonstrated, as shown

in Figure 7, where the impact of hydrodynamic interactions is plotted against415

array sizes with two increment trends for the impact of the interaction: a linear

function and a quadratic function. The impact of hydrodynamic interaction in

Figure 7 is referred to as the difference between the maximum and the minimum
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q-factor values in percentage for each array size.

Figure 7: The impact of the hydrodynamic interaction for different array sizes.

This saturation-like effect means that after a number of devices in an array,420

the impact of hydrodynamic interaction may be constant, quantifiable as a

constant percentage number.

With respect to the three regions identified especially in small farms, and

to a lesser extent in medium farms, only the short inter-device region keeps

its characteristics in large farms. The trend curve shown in Figure 8 clearly425

illustrates that the intermediate region completely disappears resulting in an

inconsistent region where q-factor values strongly fluctuate around the neutral

line (q = 1).

5. Conclusion

In this paper, the hydrodynamic impact of devices with different slenderness430

ratios and array sizes in wave energy farms is studied in four different realistic

wave climates as a function of inter-device distance using the well-known q-

factor.

The impact of wave climate in isolated devices is demonstrated to be impor-

tant, while is practically irrelevant when studying the array configuration, since435
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Figure 8: q-factor as function of normalised inter-device distance at BIMEP for a large farm

of slenderness ratio r = 1

variations in q-factor values and the shape of q-factor curves are insignificant.

Therefore, the design of the isolated device should be optimised for a given lo-

cation, but the array configuration can be designed independently. However,

the most energetic periods of all the four wave climates used in this paper are

similar, so a more in-depth analysis should be carried out before the irrelevance440

of wave climates can be confirmed.

Analysing farms of different sizes, it is found that hydrodynamic interactions

do not increase linearly with the number of devices in the array forever. Instead,

hydrodynamic interactions experience a saturation-like effect which limits their

impact.445

In small farms, three different regions with different interaction character-

istics are identified: a highly destructive and inconsistent region for short dis-

tances, a mostly constructive and consistent region for intermediate distances,

and a neutral consistent region for long distances. Characteristics of the inter-

mediate region suggest that the optimal inter-device distance in a WEC array450

may be found in this region. However, characteristics of such regions disappear
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slowly as the size of the array increases, especially due to the intensification of

fluctuations.

The slenderness of the devices implemented in the farm appears to be rel-

evant too. Slender devices (r < 1) cause more consistent interactions, but455

longer inter-device distances are required to get constructive effects. Flat de-

vices (r > 1) produce more constructive interactions with shorter inter-device

distances, but fluctuations appear to be stronger. Therefore, intermediate val-

ues of slenderness ratios (r ∼ 1) appear to be the most suitable, combining

consistent and constructive effects with relatively short inter-device distances.460

The deployment of arrays with smaller up to medium number of devices

allows the WEC array to benefit from the ideal hydrodynamic characteristics.

Ideal inter-device spacings may be between 15D and 25D for devices of interme-

diate slenderness ratios (r ∼ 1). Since larger farms may be required, such large

farms can be designed combining smaller arrays. Inter-array spacings should be465

studied to maintain the beneficial characteristics of the arrays within the farm.

Impact of wave directionality or layout configurations were not investigated

in this work. Nevertheless the knowledge achieved in this study is promising

towards the definition of parametric and heuristic approaches for the optimisa-

tion of array layouts based on the hydrodynamic performances of wave energy470

array.
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