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Abstract We present an adaptive finite element method for time-resolved simula-
tion of aerodynamics without any turbulence model parameters, which is applied
to a benchmark problem from the HiLiftPW-3 workshop to compute the flow past a
JAXA Standard Model (JSM) aircraft model at realistic Reynolds number. The mesh
is automatically constructed by the method as part of an adaptive algorithm based on
a posteriori error estimation using adjoint techniques. No explicit turbulence model
is used, and the effect of unresolved turbulent boundary layers is modeled by a sim-
ple parametrization of the wall shear stress in terms of a skin friction. In the case
of very high Reynolds numbers we approximate the small skin friction by zero skin
friction, corresponding to a free slip boundary condition, which results in a compu-
tational model without any model parameter to be tuned, and without the need for
costly boundary layer resolution. We introduce a numerical tripping noise term to
act as a seed for growth of perturbations, the results support that this triggers the
correct physical separation at stall, and has no significant effect pre-stall. We show
that the methodology quantitavely and qualitatively captures the main features of
the JSM experiment - aerodynamic forces and the stall mechanism - with a much
coarser mesh resolution and lower computational cost than the state of the art meth-
ods in the field, with convergence under mesh refinement by the adaptive method.
Thus, the simulation methodology appears to be a possible answer to the challenge
of reliably predicting turbulent-separated flows for a complete air vehicle.
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Nomenclature

cl lift coefficient (dimensionless)
cd drag coefficient (dimensionless)
cp pressure coefficient (dimensionless)
h diameter of tetrahedron in finite element mesh (m)
k time step (s)
n normal unit vector (dimensionless)
P computed pressure (Pa)
p pressure (Pa)
q pressure test function (Pa)
Re Reynolds number (dimensionless)
t time variable (s)
T end time (s)
U computed velocity (ms−1)
u velocity (ms−1)
v velocity test function (ms−1)
x space variable (m)
α angle of attack (dimensionless)
β friction parameter (kgm−2 s−1)
ν Kinematic viscosity (m2 s−1)
τ tangent unit vector (dimensionless)

1 Introduction

The main challenge today in Computational Fluid Dynamics (CFD) for aerodynam-
ics is to reliably predict turbulent-separated flows Witherden & Jameson (2017),
Slotnick et al. (2014), specifically for a complete air vehicle. This is our focus in
this paper.

We present an adaptive finite element method without turbulence modeling pa-
rameters for time-resolved simulation of aerodynamics, together with results stem-
ming from the 3rd AIAA CFD High-Lift Prediction Workshop (HiLiftPW-3) which
was held in Denver, Colorado, on June 3rd–4th 2017. The benchmark was a high-lift
configuration of the JSM aircraft model shown in Figure 1 at a Reynolds number re-
alistic for flight conditions. The purpose of the workshop is to assess the capability
of state of the art CFD codes and methods.

Turbulent flows present features on a range of scales, from the scale of the aircraft
down to the Kolmogorov dissipation scale. Direct numerical simulation (DNS) is
not feasible for a full aircraft at realistic Reynolds numbers, instead the Reynolds
Averaged Navier-Stokes equations (RANS) have long been the state of the art in
industry Shan et al. (2005). RANS methods do not provide a full resolution of the
flow field but simulate the mean field and introduce turbulence models to make it
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(a) Surface mesh (b) Pylon

(c) Volume mesh (d) Wing slice

Fig. 1 Overview of the JSM aircraft model and starting mesh for the adaptive method.

up for the unresolved dynamics. In particular, standard RANS do not resolve the
transient flow field, but a statistical average of the turbulent flow.

In contrast, Large Eddy Simulations (LES) Sagaut (2005) resolve the dynam-
ics of a filtered flow field, at the cost of higher mesh resolution than RANS, with
subgrid models for unresolved scales. Both RANS and LES, and hybrids such as
DES, introduce model parameters that need to be tuned to the problem at hand, and
the results are highly sensitive to the design of the computational mesh Moin &
You (2008), Huang et al. (2004), Spalart (2009), Piomelli & Balaras (2002), Mellen
et al. (2003). In particular, turbulent boundary layers cannot be resolved and must
be modelled. Boundary layer models require tailored boundary layer meshes, which
are expensive in terms of both mesh density and manual work. Witherden and Jame-
son in Witherden & Jameson (2017) state that “as a community we are still far away
from LES of a complete air vehicle”.

The method we present is an adaptive finite element method without explicit
turbulence model and boundary layer model, thus without model parameters and
without the need for a boundary layer mesh. The mesh is automatically constructed
by the method as part of the computation through an adaptive procedure based on a
posteriori error estimation using adjoint techniques. Dissipation of turbulent kinetic
energy is provided by residual-based numerical stabilization. The method is thus
purely based on the Navier-Stokes equations, no other modeling assumptions are
made.

We model the effect of turbulent boundary layers by a parametrization of the
wall shear stress in terms of a skin friction. For very high Reynolds numbers we
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approximate the small skin friction by zero skin friction, corresponding to a free slip
boundary condition, which results in a computational method without any model
parameters that need to be tuned, and without the need for costly boundary layer
resolution.

In this paper we give the main components of the simulation methodology and
we present our results stemming from the HiLiftPW-3, where we highlight the non-
standard aspects of the methodology and discuss the results in relation to the exper-
iments. The HiLiftPW-3 specified two variants of the JSM, one without pylon (or
nacelle) and one with the pylon included in the geometry (“pylon on”). The differ-
ence in the aerodynamic forces between the two variants measured in experiments
are small, typically less than 2 %. For this reason we will focus only on the “pylon
on” variant with the aim of validating our methodology.

The workshop guidelines prescribed the study of these two variants either with
a fixed mesh or, more interestingly, using mesh adaptation techniques. Consider-
ing the nature of our method, which intimately depends on its adaptive procedure,
we concentrated on the latter study. We did not use the provided computational
meshes, but instead generated more suitable ones for our methodology starting from
the provided CAD files. We would like to point out that our adaptive methodology
does not require any ad-hoc meshing procedure aimed at helping the solver iden-
tify flow features that are qualitatively known before starting the computations. Not
only does this simplify the meshing procedure, which can now be carried out by
non-specialized software (and scientists), but it also makes it faster: the only thing
that we need is an initial mesh that captures the geometry of the object; this is due to
the fact that the generated mesh loses memory of the underlying CAD model, and
therefore the refinement of boundary triangles cannot correct a rough initial approx-
imation of the CAD geometry. We plan to get rid of this constraint in the near future,
implementing the functionality to refine boundary cells with the new vertices pro-
jected on the CAD model. Once we have a sufficiently accurate surface description,
however, we can let the mesh be coarse in the volume part, which will be refined
iteratively by the adaptive algorithm.

This convenient approach allows us to perform computations starting with rather
coarse meshes, increasing the number of cells only where needed in order to best
utilize the available computational resources. Our initial mesh for the JSM case have
about 25M cells.

We find that the simulation results compare very well with experimental data for
all the angles of attack that we studied; moreover, we show mesh-convergence by the
adaptive method, while using a relatively low number of spatial degrees of freedom.
The low computational cost also allows for a time-resolved simulation, which pro-
vides additional results that cannot be obtained from a stationary simulation, such
as the ones based on Reynolds-averaged Navier-Stokes equations (RANS).

Thus, the simulation methodology appears to be a possible answer to the chal-
lenge of reliably predicting turbulent-separated flows for a complete air vehicle. We
specifically here present simulation results reproducing the physically correct stall
mechanism of large-scale separation at the wing-body juncture, which is promising
for our continuing work on validating the methodology.
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2 Simulation Methodology

In contrast to the statistical averages of RANS and the filtered solutions of LES, our
simulation method is based on computational approximation of weak solutions to
the Navier-Stokes equations (NSE), that satisfy the NSE in variational form inte-
grated against a class of test functions.

Finite element methods (FEM) are based on a variational form of the NSE, and
if the method satisfies certain conditions on stability and consistency, the FEM so-
lutions converge towards a weak solution to the NSE as the finite element mesh is
refined Hoffman & Johnson (2007). We refer to such FEM as a General Galerkin
(G2) method, or a Direct Finite Element simulation (DFS).

The resolution in DFS is set by the mesh size, and no turbulence model is intro-
duced. Dissipation of turbulent kinetic energy in under-resolved parts of the flow is
provided by the numerical stabilization of G2 in the form of a weighted least squares
method based on the residual of NSE.

The mesh is adaptively constructed based on a posteriori estimation of the error in
chosen goal or target functionals, such as drag and lift forces. The a posteriori error
estimates take the form of a residual weighted by the solution of an adjoint problem,
which is computed separately using a similar stabilized FEM method Hoffman &
Johnson (2007). The adaptive algorithm starts from a coarse mesh, which is locally
refined each iteration based on the a posteriori error estimates.

We use a free slip boundary condition as a model for high Reynolds number
turbulent boundary layers with small skin friction. This means that boundary layers
are left unresolved, and that no boundary layer mesh is needed.

This methodology has been validated on a number of standard benchmark prob-
lems in the literature Hoffman (2005, 2006), Hoffman & Johnson (2006b), Hoffman
(2009), including for an aircraft model for the HiLiftPW-2 ? and we find that also
for the benchmark considered in this paper the method is very efficient and provides
results close to the experimental reference data.

We have used a low order finite element discretization on unstructured tetrahe-
dral meshes, which we refer to as cG(1)cG(1), id est, continuous piecewise linear
approximation in space and time.

2.1 The cG(1)cG(1) method

As the basic model for incompressible Newtonian fluid flow, we consider the NSE
with constant kinematic viscosity ν > 0, enclosed in Ω ⊂ R3, with boundary Γ ,
over a time interval I = [0,T ]:

u̇+(u ·∇)u+∇p−2ν∇ · ε(u) = f , (x, t) ∈Ω × I,
∇ ·u = 0, (x, t) ∈Ω × I,
u(x,0) = u0(x), x ∈Ω ,

(1)
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with u(x, t) the velocity vector, p(x, t) the pressure, u0(x) the initial data and f (x, t)
a body force. Moreover, σi j = 2νεi j(u)− pδi j is the stress tensor, with the strain rate
tensor εi j(u) = 1/2(∂ui/∂x j + ∂u j/∂xi), and δi j the Kronecker delta. The relative
importance of viscous and inertial effects in the flow is determined by the Reynolds
number Re = UL/ν , where U and L are characteristic velocity and length scales.

The cG(1)cG(1) method is based on the continuous Galerkin method cG(1) in
space and time. With cG(1) in time, the trial functions are continuous, piecewise
linear and the test functions piecewise constant. cG(1) in space corresponds to both
test functions and trial functions being continuous, piecewise linear.

Let 0= t0 < t1 < ... < tN = T be a sequence of discrete time steps, with associated
time intervals In = (tn−1, tn) of length kn = tn− tn−1, and let W ⊂ H1(Ω) be a finite
element space consisting of continuous, piecewise linear functions on a tetrahedral
mesh T = {K} of mesh size h(x), with Ww the functions v ∈ W satisfying the
Dirichlet boundary condition v|Γ = w.

We seek Û = (U,P), continuous piecewise linear in space and time, and the
cG(1)cG(1) method for the NSE with homogeneous Dirichlet boundary conditions
reads: for n = 1, ...,N find (Un,Pn) ≡ (U(tn),P(tn)), with Un ∈ V0 ≡ [W0]

3 and
Pn ∈W , such that:

((Un−Un−1)k−1
n + Ūn ·∇Ūn

,v)+(2νε(Ūn
),ε(v))− (Pn,∇ ·v)

+(∇ · Ūn
,q)+SDn

δ
(Ūn

,Pn;v,q) = ( f ,v), ∀v̂ = (v,q) ∈V0×W,
(2)

where Ūn
= 1

2 (U
n+Un−1) is piecewise constant in time over In, with the stabilizing

term

SDn
δ
(Ūn

,Pn;v,q)≡ (3)
(δ1(Ū

n ·∇Ūn
+∇Pn− f ), Ūn ·∇v+∇q)+(δ1∇ · Ūn

,∇ ·v),

and

(v,w) = ∑
K∈T

∫
K

v ·wdx,

(ε(v),ε(w)) =
3

∑
i, j=1

(εi j(v),εi j(w)),

with the stabilization parameter δ1 = κ1h, where κ1 is a positive constant of unit
size. We choose a time step size kn = CCFL minx∈Ω h/|Un−1|, with CCFL typically
in the range [0.5,20]. The resulting non-linear algebraic equation system is solved
with a robust Schur-type fixed-point iteration method Houzeaux et al. (2009).
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2.2 The Adaptive Algorithm

A simple description of the adaptive algorithm, starting from i = 0, reads:

1. For the mesh Ti: solve the primal and (linearized) dual problems for the primal
solution (U,P) and the dual solution (Φ ,Θ).

2. Compute the quantity EK for any cell K of Ti. If ∑K∈Ti EK < TOL then stop,
else:

3. Mark 5% of the elements with highest EK for refinement.
4. Generate the refined mesh Ti+1, and goto 1.

Here, EK is the error indicator for each cell K, which we describe in Section 2.3.
For now, it suffices to say that EK is a function of the residual of the NSE and of the
solution of a linearized dual problem. The formulation of the dual problem includes
the definition of a target functional for the refinement, which usually enters the
dual equations as a boundary condition or as a volume source term. This functional
should be chosen according to the problem we are solving. In other words, one needs
to ask the right question in order to obtain the correct answer from the algorithm.
In this paper our target functional is chosen to be the mean value in time of the
aerodynamic forces.

The dual problem can be written as (see Hoffman & Johnson (2006a) for more
details): 

−ϕ̇− (u ·∇)ϕ +∇U>ϕ +∇θ −ν∆ϕ = ψ1 (x, t) ∈Ω × I
∇ ·ϕ = ψ2 (x, t) ∈Ω × I
ϕ = ψ3 (x, t) ∈ Γ × I
ϕ(·,T ) = ψ4 x ∈Ω ,

(4)

where we find that the structure is similar to the primal NSE equations, except that
the adjoint problem is linear, the transport is backward in time, and that we have a
reaction term (∇U>ϕ) j =U, j ·ϕ , not present in the primal NSE.

The only other input required from the user is an initial discretization of the ge-
ometry, T0. Since our method is designed for tetrahedral meshes that do not require
any special treatment of the near-wall region (no need for a boundary-layer mesh),
the initial mesh can be easily created with any standard mesh generation tool.

2.3 A posteriori error estimate for cG(1)cG(1)

The a posteriori error estimate is based on the following theorem (for a detailed
proof, see chapter 30 in Hoffman & Johnson (2007)):

Theorem 1. If Û = (U,P) solves (2), û = (u, p) is a weak NSE solution, and
ϕ̂ = (ϕ,θ) solves an associated dual problem with data M(·), then we have the
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following a posteriori error estimate for the target functional M(Û) with respect to
the reference functional M(û):

|M(û)−M(Û)| ≤
N

∑
n=1

[∫
In

∑
K∈Ti

|R1(U,P)K | ·ω1 dt

+
∫

In
∑

K∈Ti

|R2(U)K | ω2 dt +
∫

In
∑

K∈Ti

|SDn
δ
(Û; ϕ̂)K | dt

]
=: ∑

K∈Ti

EK

with

R1(U,P) = U̇+(U ·∇)U+∇P−2ν∇ · ε(u)− f ,

R2(U) = ∇ ·U, (5)

where SDn
δ
(·; ·)K is a local version of the stabilization form (3), and the stability

weights are given by

ω1 =C1hK |∇ϕ|K ,
ω2 =C2hK |∇θ |K ,

where hK is the diameter of element K in the mesh Ti, and C1,2 represent interpo-
lation constants. Moreover, |w|K ≡ (‖w1‖K ,‖w2‖K ,‖w3‖K), with ‖w‖K = (w,w)1/2

K ,
and the dot denotes the scalar product in R3.

For simplicity, it is here assumed that the time derivatives of the dual variables
ϕ̂ = (ϕ,θ) can be bounded by their spatial derivatives. Given Theorem 1, we can
understand the adaptive algorithm. As mentioned above, the error indicator, EK , is
a function of the residual of the NSE and the solution of a linearized dual problem
(a detailed formulation of the dual problem is given in Chapter 14 in Hoffman &
Johnson (2007)). Thus, on a given mesh, we must first solve the NSE to compute
the residuals, R1(U,P) and R2(U), and then a linearized dual problem to compute
the weights multiplying the residuals, ω1 and ω2. With that information, we are able
to compute ∑K∈Ti EK and check it against the given stop criterion. This procedure
of solving the forward and backward problems for the NSE is closely related to
an optimization loop and can be understood as the problem of finding the “optimal
mesh” for a given geometry and boundary conditions, id est, the mesh with the least
possible number of degrees of freedom for computing M(û) within a given degree
of accuracy.

2.4 The Do-nothing Error Estimate and Indicator

To minimize loss of sharpness, we also investigate an approach where the weak
form is used directly in a posteriori error estimates, without integration by parts to
the strong form, using the Cauchy-Schwarz inequality and interpolation estimates.
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We here refer to this direct form of a posteriori error representation by duality as the
“do-nothing” approach.

In terms of the exact adjoint solution ϕ̂ , the output error with respect to a weak
solution û can be represented as

|M(û)−M(Û)|= |(R(Û), ϕ̂)|= | ∑
K∈Ti

(R(Û), ϕ̂)K | (6)

This error representation involves no approximation or inequalities. We thus refer
to the following error indicator based on the representation as the do-nothing error
indicator:

eK ≡ (R(Û), ϕ̂)K (7)

A computable estimate and an error indicator are again based on the computed
approximation ϕ̂h of the dual solution:

|M(û)−M(Û)| ≈ |(R(Û), ϕ̂h)| (8)

eK
h ≡ (R(Û), ϕ̂h)K (9)

where we may lose reliability of the global error estimate by the Galerkin orthog-
onality property, which states that the (R(Û), ϕ̂h) vanishes for a standard Galerkin
finite element method if ϕ̂h is chosen in the same space as the test functions. Al-
though, in the setting of a stabilised finite element method this may not be the case,
see Hoffman et al. (2016).

2.5 Turbulent boundary layers

In our work on high Reynolds number turbulent flows Hoffman & Jansson (2010),
Hoffman & Johnson (Published Online First at www.springerlink.com: 10 Decem-
ber 2008), Vilela de Abreu et al. (2014) we have chosen to apply a skin friction
stress as wall layer model. That is, we append the NSE with the following boundary
conditions:

u ·n = 0, (10)
βu · τk +nT

στk = 0, k = 1,2, (11)

for (x, t) ∈ Γsolid × I, with n = n(x) an outward unit normal vector, and τk = τk(x)
orthogonal unit tangent vectors of the solid boundary Γsolid . We use matrix notation
with all vectors v being column vectors and the corresponding row vector being
denoted by vT .

With skin friction boundary conditions, the rate of kinetic energy dissipation in
cG(1)cG(1) has a contribution of the form
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2

∑
k=1

∫ T

0

∫
Γsolid

|β 1/2Ū · τk|2 ds dt, (12)

from the kinetic energy which is dissipated as friction in the boundary layer. For
high Re, we model Re→ ∞ by β → 0, so that the dissipative effect of the boundary
layer vanishes with large Re. In particular, we have found that a small β does not
influence the solution Hoffman & Jansson (2010). For the present simulations we
used the approximation β = 0, which can be expected to be a good approximation
for real high-lift configurations, where Re is very high.

2.6 Numerical tripping

The simulation setting so far is idealized in the sense that the inflow is noise-free,
the surfaces have no roughness, there are no vibrations in the surface, etc. This is
not a realistic setting.

In the DNS community the effect of introducing noise has been investigated in
Schlatter & Orlu (2012), and it turns out that in idealized settings different DNS
methods and frameworks may get different results for the same problem, but intro-
ducing a noise term has the effect of making the results more uniform.

We explore a similar idea here, where we add a volume force term of simple
white in a domain approximately the bounding box of the aircraft geometry. We
want the noise to only slightly perturb the solution, to act as a seed for growth of
perturbations in unstable mechanisms (such as stall), but we do not want the noise
to dominate the solution.

To achieve this balanced effect we scale the white noise force term by 5% of the
maximum pressure gradient |∇p|.

We investigate the effect of such numerical tripping in the results section, com-
paring simulations with and without the tripping. We will see that especially for stall
this appears to have a key effect in triggering the correct physical separation.

2.7 The FEniCS-HPC finite element computational framework

The simulations in this article have been computed using the Unicorn solver in the
FEniCS-HPC automated FEM software framework.

FEniCS-HPC Hoffman et al. (2015) is an open source framework for the auto-
mated solution of PDEs on massively parallel architectures, providing automated
evaluation of variational forms whose description is given in a high-level mathe-
matical notation, duality-based adaptive error control, implicit turbulence model-
ing by use of stabilized FEM and strong linear scaling up to thousands of cores
Hoffman et al. (2013, 2012), Jansson et al. (2012), Kirby (2012), Logg, Ølgaard,
Rognes & Wells (2012), Hoffman, Jansson, Jansson & Nazarov (2011), Hoffman,
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Jansson, Jansson, Johnson & de Abreu (2011). FEniCS-HPC is a branch of the FEn-
iCS Logg, Mardal, Wells et al. (2012), FEniCS (2003) framework focusing on high
performance on massively parallel architectures.

Unicorn is solver technology (models, methods, algorithms and software) with
the goal of automated high performance simulation of realistic continuum mechan-
ics applications, such as drag or lift computation for fixed or flexible objects (FSI)
in turbulent incompressible or compressible flow. The basis for Unicorn is Unified
Continuum (UC) modeling Hoffman, Jansson & Stöckli (2011) formulated in Euler
(laboratory) coordinates, together with the General Galerkin (G2) adaptive stabi-
lized finite element discretization described above.

The simulations in this paper were run on supercomputer resources described in
the Acknowledgments section, and took ca. 10h on the finest mesh for the whole
time interval using ca. 1000 cores.

3 Results

We have performed simulations with the adaptive DFS methodology using the
Unicorn/FEniCS-HPC framework for the JSM “pylon on” variant of the HiLiftPW-3
benchmark for the angles 4.36◦, 10.58◦, 18.58◦, 21.57◦ and 22.58◦. All angles ex-
cept 22.58◦ have rich experimental data including forces, cp and oil film provided
by the workshop, which we will compare against below. The angle 22.58◦ only has
force data. The angles 21.57◦ and 22.58◦ exhibit stall in the experiment, e.g. large-
scale separation leading to loss of lift force. Capturing stall quantitatively and with
the correct stall mechanism is an open problem in aerodynamics, we therefore inves-
tigate both the angle 21.57◦, which is the highest angle with detailed experimental
data, as well as 22.58◦,

The experiment is a semispan model at Re = 193M. However, “free air” compu-
tations were requested, and to avoid possible modeling errors introduced by a sym-
metry plane we model the entire aircraft. However, we choose the output quantity
as drag and lift of the left side of the aircraft only, to save computational resources,
where we expect the adaptive method to refine in the right half-volume only when
there is a significant error contribution to the drag and lift on the left side.

The initial mesh in the adaptive method has ca. 2.5M vertices, and the mesh is
then iteratively refined with 5% of the cells in every iteration until we observe mesh
convergence in drag and lift, or as many times as we can afford. The finest adapted
meshes in our computations presented here have 5M to 10M vertices.

We solve the time-dependent Navier-Stokes equations (1) with a non-dimensional
unit inflow velocity over the time interval I = [0,10]. For some of the cases close to
stall where we observe a longer startup, we extend the time interval to I = [0,20].
To compute the aerodynamic coefficients we take the mean value in the last quarter
of the time interval, e.g. [7.5,10] or [15,20], respectively.

We have divided this section into three parts:
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1. Detailed comparison of aerodynamic forces against the experiments including
convergence of the adaptive method and analysis of stall.

2. Detailed comparison of the pressure coefficients cp against the experimental
data, including analysis of cp in the stall regime.

3. Flow visualizations are presented, including dual quantities acting as weights in
the error estimates, and comparison of surface velocity against oil film visualiza-
tions in the experiment.

3.1 Aerodynamic Forces

The aerodynamic force in the case of zero skin friction is computed as:

F =
1
|I|

∫
I

∫
Γa

pndsdt, (13)

with Γa the left half-boundary of the aircraft. The drag and lift coefficients are then
simply the x and y components of F since we have unit inflow.

We use the duality-based “do-nothing” adaptive method, which iteratively refines
the mesh by repeatedly solving the primal and dual problem based on the a posteriori
error estimate. This generates a sequence of adapted meshes, a procedure that takes
the role of the classical mesh study.

In Figure 2 we plot the lift coefficient, cl, and drag coefficient, cd, versus the an-
gle of attack, α , for the different meshes from the iterative adaptive method. The size
of the dots indicates the iteration number in the adaptive sequence, with larger dots
indicating a larger number, that is more refinement. We connect the finest meshes
with lines, and also plot the experimental data as lines. For the angles 18.58◦ and
22.58◦ we compute the solution both with and without the “numerical tripping” term
described in Section 2.6 to assess the dependence on the angle of attack, the tripped
cases are plotted in red, and the adaptive sequence shifter somewhat to the right for
clarity.

We observe mesh convergence to within 1 % to 2 % for all cases, a close match to
the experiments for cl, within circa 5 %, and a small overprediction of circa 10 % for
cd, which is consistent with the majority of the participants in HiLiftPW-3 across
a range of methods Rumsey (2017), suggesting a systematic error in the problem
statement or the experimental data.

For the stall regime angles 18.58◦, 21.57◦ and 22.58◦ we qualitatively reproduce
the stall phenomenon in the experiment – a decrease in cl with increased angle
of attack past 21.57◦. We observe that the stall angle occurs somewhere between
18.58◦, 21.57◦ which is ca. 1◦ from the experimental stall angle.

Additionally we verify that the “numerical tripping” functions as expected: the
term has no significant impact on the solution for an angle of 18.58◦, which is the
maximum lift angle and the maximum non-stalling angle, whereas for the stalling
angle 22.58◦ we observe that the tripping has the effect of triggering a large-scale



Time-Resolved Adaptive Direct FEM Simulations 13

10 20 30 40 50
angle of attack

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

cl

sim (adapt. it. smaller)
sim tripped (adapt. it. smaller)
exp. pylon

10 20 30 40 50
angle of attack

0.1

0.2

0.3

0.4

0.5

0.6

cd

HiLiftPW-3 JSM pylon-on Unicorn - cl and cd vs. angle of attack

Fig. 2 Lift coefficient, cl, and drag coefficient, cd, versus the angle of attack, α , for the different
meshes from the iterative adaptive method.

separation consistent with the stall phenomenon, whereas the untripped case appears
to contain too small perturbations for the separation to occur. We analyze the stall
mechanism in more detail in the surface velocity visualization below.

To analyze the variability in time of cd and cl we plot the time evolution for
α = 4.36◦ in Figure 3, untripped with α = 18.58◦ in Figure 4 and tripped with
α = 18.58◦ in Figure 5.

For the pre-stall cases we observe an initial “startup phase” for t ∈ [0,5] and then
an oscillation around a stable mean value. The effect of the numerical tripping is
noise in the cd and cl signals with amplitude of about 1 %.

3.2 Pressure coefficients

The pressure coefficients cp from both simulation on the finest adaptive mesh and
experiments are plotted in Figures 7, 8 and 9, for the wing, flap and slat respectively.

The pressure sensor locations corresponding to the plots are specified in the dia-
gram in Figure 6.
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Fig. 3 Time evolution of lift coefficient, cl, and drag coefficient, cd, and a table of the value for
the finest adaptive mesh with relative error compared to the experimental results for α = 4.36 ◦.
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Fig. 5 Time evolution of lift coefficient, cl, and drag coefficient, cd, and a table of the value for
the finest adaptive mesh with relative error compared to the experimental for α = 18.58 ◦ with
numerical tripping.

Since the aerodynamic force defined in (13) matches the experiment well, and
since it consists of integrals of the pressure weighed by the normal vector, the cp
values also have to match the experiment on average. However, the cp plots can give
insight into local mechanisms such as separation patterns, an important example
being the stall mechanism. These local mechanisms are what we will focus on here.

First of all, we see that for the pre-stall angles α = 10.48 ◦ and α = 18.58 ◦ the
simulation and experiment match very well for the wing and slat, and generally well
for the flap, aside from local differences. The cp for the simulation is lower on the
upper surface for the flap close to the body (the A-A station). Otherwise the curves
generally match.

For the stall regime we analyze both 21.57 ◦ where experimental cp are available
and 22.56 ◦ where experimental cp plots are not available. We compare both against
the experimental cp plots for 21.57 ◦ to have a margin for if we have stall at a higher
angle in the simulation. The simulation matches the experiment very well, there is a
small discrepancy for the wing close to the body (the A-A station), but considering
that this is where the large-scale separation causing the stall is located, the results
match acceptably.

The matching cp curves are consistent with matching cd and cl from the aerody-
namic force plots.

We now compare the tripped and untripped simulation with the experiment at
22.56 ◦, as well as 22.56 ◦ in Figure 10 for the wing. We clearly see that the untripped
simulation for 22.56 ◦ grossly misses the cp on the upper surface at station A-A, near
the wing-body junction where the large-scale separation mechanism causing stall is
located, while the tripped simulation captures the experimental cp curve well, aside
from a slightly lower cp near the leading edge. We conclude that the tripping acts
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Fig. 6 Diagram of the pressure sensor layout for the JSM configuration showing where the pressure
sensors are located and how they are denoted.

to trigger the physically correct separation. At the other stations, D-D and G-G, the
tripped and untripped simulations are very similar, indicating that the tripping does
not have a significant effect aside from the triggering of the perturbations.

The α = 21.57 ◦ simulation is tripped and captures the experiment less well than
22.56 ◦, but better than 22.56 ◦ untripped indicating that we may have a ca. 1◦ later
stall angle in the simulation than in the experiment.

3.3 Flow and Adaptive Mesh Refinement Visualization

Here we concentrate on presenting effective visualization of the flow and the adap-
tive mesh refinement procedure. Our aim is to provide information on the properties
and features of the approximated solution and, more importantly, of the approximat-
ing procedure, most of which cannot be discerned from one dimensional plots of the
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Fig. 7 Pressure coefficients, cp, versus normalized local chord, x/c, for the angles of attack α =
10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦ (right) at locations A-A (top), D-D (middle)
and G-G (bottom) for the wing of JSM pylon on.

pressure coefficient and the aerodynamic forces. Sometimes these more complex vi-
sualizations cannot be directly compared to experiments, but still they constitute a
qualitative validation of the results.

The first plots that we show are the surface plots of the velocity magnitude on the
upper side of the wing. Together with the velocity magnitude surface plots we also
report pictures of the oil film experiment that was provided by the organizers as a
validation tool. These serve as comparison tools, and we report such comparison in
Figure 11.

Some common features intrinsic of the geometry of the JSM aircraft are revealed
by the oil film experiment and reproduced by the velocity plots. A pattern of low
velocity streaks, alternating with areas of higher velocity, is seen on the suction side
of the fixed wing for all angles of attack. This is caused by separation at the slat
tracks upstream, which is correctly captured by the numerical solution.

Another characteristic feature of the flow is the turbulent separation near the tip
of the wing. This is particularly evident in the case α = 18.59◦,
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Fig. 8 Pressure coefficients, cp, versus normalized local chord, x/c, for the angles of attack α =
10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦ (right) at locations A-A (top), D-D (middle)
and G-G (bottom) for the flap of JSM pylon on.

Areas that exhibit this kind of flow behavior influence the aerodynamic forces on
the aircraft, and indeed in our experimentation we found that computations done on
some meshes resulted in wrong predictions of the target functionals, usually yielding
lower lift coefficients than the experimental ones. We were able to overcome this
intermediate obstacle by refining the surface mesh were the original geometry had
a higher curvature. We later interpreted the effectiveness of this workaround as a
symptom that the original meshes were unable to capture the surface geometry to a
sufficient degree of accuracy, and were for this reason failing at reproducing these
complex patterns.

Another interesting visualization technique, which we are about to present, is
more closely related to turbulence itself: the Q-criterion Hunt et al. (1988). The Q-
criterion was widely used in the literature to visualize turbulent features of fluid
flows. The main idea is that it is possible to define a quantity, commonly denoted by
the letter Q, whose value is related to the vorticity and thus the visualization of the
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Fig. 9 Pressure coefficients, cp, versus normalized local chord, x/c, in the stall regime for the
angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦ (right) at locations A-A
(top), D-D (middle) and G-G (bottom) for the slat of JSM pylon on.

isocontours of Q is claimed to give visual information on the presence and location
of vortexes within the flow field.

The Q-criterion for the case of the airplane with pylon is displayed in Figure 12
for three different angles of attack.

Once again, the visualization technique highlights the same pattern as in the pre-
vious case: the isosurfaces assume a characteristic V shape along the interfaces be-
tween the fast and slow velocity regions on the suction side of the wing. Not only
that, but we can also clearly distinguish a clustering of these isosurfaces near the
tip of the wing, matching the position of the turbulent separation zone that we men-
tioned above. The Q-criterion visualizations are consistent with the surface velocity
plots, and this internal coherence increases our trust in the computational results.

Let us now turn our attention to the adaptive procedure which produces the suc-
cessive approximations of the fluid flow. As we described above, the mesh refine-
ment solution is driven by the residual of the Navier-Stokes equations and the solu-
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Fig. 10 Pressure coefficients, cp, versus normalized local chord, x/c, for the angle of attack α =
22.56 ◦ untripped (left), the same angle α = 22.56 ◦ tripped (middle) and α = 21.57 ◦ tripped at
locations A-A (top), D-D (middle) and G-G (bottom) for the wing of JSM pylon on.

tion of the dual Navier-Stokes equations. We begin by showing a plot of a volume
rendering of the dual solution, see Figure 13.

What is worth noting here is that the adjoint velocity flows backwards in time
and, consequently, it appears to be flowing in the opposite direction of the primal
velocity. We observe that the part of the mesh where the dual velocity has higher
values is upstream to the airplane. Because of the way the do-nothing error estimator
is designed, we expect that the refinement will happen where both the residual and
the dual solution are large. Indeed, this has the important implication that the mesh
refinement will not only happen on the wing, where the forces are computed, but
also upstream, splitting cells that, a priori, are unrelated to the computation of the
aerodynamic forces.

This feature is unique for our methodology: while other methods tend to refine
the mesh in zones where intuitively higher accuracy would yield better approxi-
mation of the aerodynamic forces, namely around the body and downstream, the
adaptive algorithm provides an automatic procedure that knows nothing about the
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(a) α = 10.48◦ (b) α = 10.48◦

(c) α = 18.59◦ (d) α = 18.59◦

(e) α = 21.57◦ (f) α = 22.56◦

Fig. 11 Comparison between experimental oil film visualization (left) and surface rendering of the
velocity magnitude (right).

features of the flow but only takes into account the residual of the equations of mo-
tion and the solution of the dual problem.

In our numerical experimentation we found that this is exactly what happens, as
we are about to show. Consider Figure 14, showing a crinkled slice of the mesh for
the initial and the finest meshes for a given angle of attack. It is clear that the mesh
refinement procedure is concentrating both on the area around the surface where
the aerodynamic forces are computed and in the upstream region. Some cells are
refined downstream due to the large residual.
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(a) α = 10.48◦

(b) α = 18.59◦

(c) α = 22.56◦

Fig. 12 Isosurface rendering of the Q-criterion with value Q = 100.
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Fig. 13 Volume rendering of the time evolution of the magnitude of the adjoint velocity ϕ magni-
tude, snapshots at t = (16, 18, 20).
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(a) Starting mesh

(b) Finest adaptive mesh

Fig. 14 Crinkled slice aligned with the angle of attack, α = 10.48◦

4 Conclusions

This paper presents an adaptive finite element method without turbulence model
parameters for time-dependent aerodynamics, and we validate the method by simu-
lation results of a full aircraft model originating from the 3rd AIAA CFD High-Lift
Prediction Workshop (HiLiftPW-3) which was held in Denver, Colorado, on June
3rd-4th 2017. The mesh is automatically constructed by the method as part of the
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computation through duality-based a posterori error control and no explicit turbu-
lence model is used. Dissipation of turbulent kinetic energy in under-resolved parts
of the flow is provided by the numerical stabilization in the form of a weighted least
squares method based on the residual of the NSE. Thus, the method is purely based
on the NSE mathematical model, and no other modeling assumptions are made.

The DFS method and these simulations are thus parameter-free, where no a pri-
ori knowledge of the flow is needed during the problem formulation stage, nor dur-
ing the mesh generation process. Additionally, the computational cost is drastically
reduced by modeling turbulent boundary layers in the form of a slip boundary con-
dition, and thus no boundary layer mesh is needed.

The computed aerodynamic coefficients, are very close to the experimental val-
ues for all the angles of attack that we studied. In particular, cl is within circa 5 %
of the experiments, cd has a small overprediction of circa 10 %, which is consis-
tent with the majority of the participants in HiLiftPW-3 across a range of methods
Rumsey (2017), suggesting a systematic error in the problem statement or the ex-
perimental data.

The fact that the error is automatically estimated by the method is itself a critical
feature missing in most (if not all) other computational frameworks for CFD.

Moreover, the adaptive procedure in DFS is seen to converge to a mean value with
oscillations of the order of 1 % to 2 %. This contributes to increase the confidence
in the numerical method.

The point of adaptive computations is all about saving on the computational cost.
During the workshop we had the chance to compare our performance with that of
the other participating groups. In terms of number of degrees of freedom, DFS is
about ten times cheaper than the leading RANS and Lattice Boltzmann Methods.

To capture stall, we applied a tripping noise term that turned out to have the effect
of triggering the physically correct stall separation pattern. A similar idea with a
noise term is employed in the DNS community as well, and the addition of this
term seems to have no effect on non-stalling configurations, which is an important
validation.

We observed that DFS was able to capture the stall mechanism of the proposed
configuration, namely the large scale separation pattern that occurs at the wing-body
juncture. The same mechanism is observed in the experiments. The stall angle is also
captured within ca. 1 ◦.
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