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ABSTRACT. Classical models of electrophysiology do not typically account for the effects of high
structural heterogeneity in the spatio-temporal description of excitation waves propagation. We
consider a modification of the Monodomain model obtained by replacing the diffusive term of the
classical formulation with a fractional power of the operator, defined in the spectral sense. The
resulting nonlocal model describes different levels of tissue heterogeneity as the fractional expo-
nent is varied. The numerical method for the solution of the fractional Monodomain relies on an
integral representation of the nonlocal operator combined with a finite element discretisation in
space, allowing to handle in a natural way bounded domains in more than one spatial dimension.
Numerical tests in two spatial dimensions illustrate the features of the model. Activation times,
action potential duration and its dispersion throughout the domain are studied as a function
of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is
recovered.
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1. INTRODUCTION

Heart electrophysiology is the subject of a vast interdisciplinary literature, from medical sci-
ences to bio-engineering, physiology, chemistry and physics, where mathematical modelling and
numerical simulations have been playing a crucial role for more than 20 years. The electrical ac-
tivity of the heart as a whole is characterized by a complex multiscale structure, ranging from the
microscopic activity of ion channels in the cellular membrane to the macroscopic properties of the
anisotropic propagation of the excitation and recovery fronts in the whole heart.

If modern imaging techniques, such as high-resolution magnetic resonance imaging (MRI), al-
low high level of accuracy in the description of both the microstructure of the tissue and the
global anatomy of the organ, most current mathematical models (the Bidomain and Monodomain
equations, [1]) are still based on a formalism whose derivation is based on significant simplifying
assumptions of the spatial domain complexity. From the anatomical standpoint, the heart fea-
tures a complex structural organization. Elongated muscle cells form a network of branching and
merging fibres that in ventricular walls exhibit a rotation of more than 100 degrees transmurally.
In addition, cardiac walls contain other cell populations, such as fibroblasts, and structures like
blood vessel at scales ranging from a few um to several mm. Although some models are currently
including a mesoscale structure, such as the Purkinje tree in the ventricles ([2, 3]), the microscopic
complexity of the cardiac wall has been largely ignored in whole-heart models, mainly because
these small structures remain below the attainable size of discretisation grids [4], and incorporat-
ing effects of microstructures in correspondence with a much coarser discretisation grid is extremely
challenging.

Mathematical models of electrical propagation in excitable media are typically derived via ho-
mogenisation in a periodic spatial arrangement of cardiomyocytes, with linear gap junctions. Such
paradigm is intrinsically limited, as it is based on the assumption that microscopic inhomogeneities
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in the medium have a negligible effect on the transport phenomena observed at the macroscopic
scale. In highly heterogeneous structures, such as cardiac or neural tissue, where there is no clear
separation of scales, this hypothesis is questionable. Recent developments prompt a reconsidera-
tion of the level at which inhomogeneities should be included. In the first place, imaging resolution
is rapidly increasing. In addition, there is a growing awareness of the importance of structural ab-
normalities in a wide range of cardiac diseases and the progressive remodelling that occurs during
such diseases. In cardiac MRI, a recent work by Bueno-Orovio and colleagues [14] established a
connection between myocardial microstructure and the experimentally observed anomalous diffu-
sion of water molecules in the tissue. Moreover, experimental data of cardiac electrophysiological
dynamics highlight peculiar features, such as wide action potential foot [6] and marked disper-
sion of Action Potential Duration (APD) [7], that are not captured by standard models, neither
Bidomain nor Monodomain. As numerical modelling plays an increasing role in the development
of knowledge in cardiac electrophysiology, these limitations hinder the reliability of the models
themselves, as well as their viability to explore in depth complex pathological mechanisms. Alter-
native modelling strategies are thus needed to provide additional insight into the effect produced
by structural heterogeneity.

In the last few decades, mathematical models involving differential operators of non-integer order
have been considered in a variety of disciplines (such as physics, engineering, chemistry, rheology
[8, 9, 10, 11, 12, 13]) with the aim of reproducing transport phenomena whose characteristics sig-
nificantly deviate from the classical Markovian and Gaussian features, typical of standard diffusion
models. Although the interest in fractional operators linked to practical applications is increasingly
growing, the successful implementations of fractional models to model real life phenomena are still
scarce.

To the best of our knowledge, the work by Bueno-Orovio et al. [5] is the first example in which
a space-fractional mathematical model of cardiac electrophysiology is studied. This is done by
replacing the classical diffusive term in the model with a fractional power of the Laplacian operator
which introduces nonlocality effects on the spatio-temporal propagation of the electrical wave. The
biophysical justification given by the authors of [5] for the use of the fractional Laplacian operator
in this particular application is based on potential theory and the effect produced on the electrical
field by the various inhomogeneities present on a variety of length scales in biological tissue. This
connection to potential theory allowed the authors of [5] to show that a fractional model can
be interpreted as a smooth transition from the case of a perfectly homogeneous medium to a
domain with increasing degree of heterogeneity as the order of the fractional operator decreases.
Although capturing peculiar features of action potential propagation in heterogeneous media, and
showing good agreement with experimental data, their numerical simulations are restricted to
one-dimensional intervals.

The numerical method implemented in [5] exploits explicit knowledge of the eigenpairs of the
Laplacian operator coupled to the desired boundary conditions on a one-dimensional interval. If the
extension of this methodology to two and three dimensional cartesian domains is pretty straight-
forward, its application to real geometries is not practical, as eigenvalues and eigenfunctions are
not known analytically in these cases. An efficient method for approximating the eigendecompo-
sition of the Laplacian on more general domains has been recently proposed in [15]. Rather than
directly computing the eigenpairs of the Laplacian, together with our collaborators we followed in
[16] an alternative strategy to approximate the action of the nonlocal operator on a given func-
tion, exploiting the heat-semigroup formulation of the fractional operator in order to handle both
general domains and general boundary conditions. Halfway between the two approaches, Burrage
et al. [17] analysed in detail three methods for the solution of fractional-in-space reaction-diffusion
equations involving fractional powers of a suitable matrix linked to the finite element mass and
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stiffness matrices of the classical heat equation, coupled to the desired boundary conditions (see
further details in Section 3), perhaps not exploiting to the fullest the flexibility of their approach.
In fact, they worked exclusively with fractional modifications of reaction-diffusion problems in-
volving (—A)?®, but the same strategies can be used for evolution equations involving more general
fractional powers of non-negative second order elliptic operators, e.g., in the form £ = -V - DV,
which are much more suited to the modelling of transport phenomena in complex domains.
Motivated by the promising results obtained in one spatial dimension (see [18]) and by the
potential novel insight that fractional electrophysiological models could offer when used on realistic
bounded geometries, in Section 3 we introduce a nonlocal modification of the Monodomain model
that can take into account both the heterogeneity and the anisotropic character of the underlying
spatial structure. We briefly describe the challenges linked to the use of nonlocal operators in
bounded settings and show that the approach used in [16] can be naturally adapted to discretise
the equations of interest considered here. We highlight the link between the integral representation
of fractional powers of a non-negative second order elliptic operator and fractional powers of a
suitable matrix deriving from a finite elements spatial discretisation of the problem, thus making
a connection to the work in [17] (Section 4.1). As a result, we obtain a numerical tool that is
flexible enough to handle both regular and possibly irregular realistic geometries, while being able
to account for desirable properties in the modelling of electrical propagation in a complex structure.
Some numerical results are shown in Section 5 and conclusions for this work are drawn in Section 6.

2. STANDARD MONODOMAIN MODEL IN ELECTROCARDIOLOGY

Mathematical models of electrical signal propagation in cardiac electrophysiology consist of
suitable spatially distributed formulations of specific ionic models reproducing the response of a
single excitable cell to an applied electrical stimulus. Tonic models describe the temporal evolution
of the transmembrane potential u of a single excitable cell and the changes in u caused by the
opening and closing of various ion channels present in the cell membrane, driving the movement of
ions into and out of the cell. A classical approach adopted in order to account for pulse propagation
is to introduce spatial dependence via the Monodomain or the Bidomain model (e.g., see [1]). Both
formulations consist of coupled PDE-ODE systems: while in the Monodomain case there is only
one parabolic (typically nonlinear) PDE governing the transmembrane potential, the Bidomain
involves a system of two PDEs (one nonlinear and parabolic, the other linear and elliptic) governing
both the intracellular and the extracellular potentials.

A priori more accurate, the Bidomain is computationally more expensive due to its mathemat-
ical features: the matrix multiplying the time derivatives of the potentials is singular, inducing
some difficulties in the numerical approximation of the system that lead to ill conditioned problems
[19, 20]. For these reasons many efforts have been devoted to set up efficient solvers and precon-
ditioners [21, 22, 23, 24|, possibly based on parallel multigrid approaches [25, 26, 27] or suitable
approximations of the equations [28]. Potse and collaborators [29] compared the action potential
propagation velocities using Bidomain and Monodomain and concluded that the latter propagates
slightly slower (2%). However, in absence of external fields, the Monodomain model is shown to be
accurate enough to capture the desired dynamics and effects of the action potential propagation
on the scale of a human heart (see [29, 30]). Since the main difference in the propagation speed
between the two models is localised at the propagation front but not along the fibre main direc-
tions, in recent years several studies have been devoted to efficiently couple the computationally
cheaper Monodomain model with an accurate fibre description obtained from medical imaging
[31, 32, 33, 34].

In light of the previous considerations, we base our study on the Monodomain model, and we
briefly recall here its features. As the myocardial tissue is made of elongated cells surrounded
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by an extracellular medium and connected to each other via gap junctions forming a complex
network of fibres, the local conductivity depends upon the fibres orientation, and in the most
general case the associated tensor is anisotropic (see e.g. [35, 36]). At any point x € ), where
Q is the spatial domain under consideration, it is thus possible to identify an orthonormal triplet
of directions: parallel to the fibre direction, a;(x), tangent, a;(x), and orthogonal, a,(z), to the
radial lamination that is transversal with respect to the fibre axis.

Denoting by oy, o4, and o,, the conductivity coefficients in the a;, a; and a,, directions, respec-
tively, the conductivity tensor is given by

(1) D(x) = ai(w)ay(w)a) () + o1 (x)ay(2)a) () + on(z)an (z)ay (2).

It is usually assumed that D satisfies in  a uniform elliptic condition [1].
With these positions, the Monodomain model reads:

Xcm% -V -DVu + XIion(ua w) = Istim In QX (O, T)
dw .

@) i R(u,w) in Q x (0,7)
u(x,0) = up(x), w(z,0)=wo(x) in Q
n"DVu(z,t) =0 on 90 x (0,T),

where y is the cell surface-to-volume ratio, C,, is the membrane capacitance per unit area, [, is
the sum of all transmembrane ionic currents, Iy, is an applied stimulus, while n is the unit normal
outward-pointing vector on the boundary surface 9€). In the above system, u is the transmembrane
potential, while w is a vector collecting the state variables (such as gating and concentrations
variables) of the ionic model under consideration, and whose dynamics we denote in general by
R(u,w). The homogeneous Neumann boundary condition on 92 models an insulated myocardium.
In this work, the numerical results of Section 5 were obtained for the Beeler-Reuter ionic model
[37], but the methodology described in the following sections applies without modification to any
ionic model.

3. A FRACTIONAL MONODOMAIN TO DESCRIBE TISSUE HETEROGENEITIES

In order to capture the effect of heterogeneities in the action potential propagation, we propose
a space-fractional formulation of the Monodomain model that can be obtained by replacing the
diffusion term in the parabolic equation with a nonlocal operator. Here we consider fractional
powers of order s € (0,1), defined in the spectral sense, of the diffusion operator £L = —V - DV.
The resulting nonlocal operators include the boundary conditions in their definition (homogeneous
Neumann in the case at hand), and will be denoted by L3, yielding

Xcm% + Ej\/u + Xlion(u, ’lU) = Istim in Q % (0’ T)

u(z,0) = up(z), w(z,0)=wo(x) in Q.

The crucial issue with fractional order differential operators is that they are naturally defined
on the entire space R™, n > 1. However, in the majority of practical cases one needs to model
quantities that are defined only on a bounded domain €2 C R™. The main challenge is hence to
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suitably restrict, adapt, or interpret the definition of a fractional operator so that it preserves
its nonlocal character while allowing for a well-posed formulation of the problem on ). For this
reason, we base our model on the spectral definition of fractional powers of L.

3.1. Integral representation of L3,. Spectral fractional powers of £ with exponent s € (0,1)
are defined via the pairs {);, ¢; }‘;‘;0 of eigenvalues and orthonormal eigenfunctions of the operator
L in Q. coupled to homogeneous Neumann boundary conditions on 0f2. Specifically, if

L:(,Oj = )\jQDj in Q,
(4)
n"DVy; =0 on 09,

with eigenfunctions such that [¢;[/z2(q) = 1, then the fractional power with exponent s € (0,1) of
L coupled to the homogeneous Neumann boundary condition is defined as

(5) L/s\/v = Z)‘?<Uv(pj><pjv
J
for all functions v € L?(Q2) such that > A2*|(v, ;)|* < oo, where (-,-) denotes the inner product
in L?(Q).
On a bounded domain 2, rather than working with (5), one can use the heat-semigroup definition
of the fractional operator (see [38]), stating that for all z € Q,

R 1 e dr
(6) Liv(x) = T s) /0 (2(z,7) —v(2)) e
where z(z, 7) denotes the solution of the parabolic equation
0-z+Lz=0 (x,7) € 2 x (0,00),
(7) z(x,0) = v(x) x €,
n’DVz=0 (z,7) € 00 x [0,00).

We stress the fact that 7 plays the role of time in the equation (7) but in reality it is simply the
integration variable in the integral definition of £}, and hence it must not be confused with the
real temporal variable (denoted by t) in the parabolic problem (3).

Remark 1. Notice that, for a bounded domain Q@ C R™, expressions (5) and (6) remain valid in
the more general case of L being a linear non-negative second-order partial differential operator,
with discrete spectrum, densely defined and self-adjoint in L?(Q) [38].

4. NUMERICAL APPROXIMATION OF THE FRACTIONAL MONODOMAIN MODEL
We discretise in space the domain with a regular triangulation 7, and we consider a finite

element space Vj,: let {¢; };V:’ll be a basis for Vj,.

4.1. Spatial discretisation of the fractional operator. We focus here on the approximation
of Ljsv for a given function v on 2. We denote by M ¢ RNwXNe and L € RV»*Nn the symmetric
mass and stiffness finite element matrices whose entries are given by

(8) M=) /K¢i¢j Lij=Y_ /K(V%)TDV(Z%-

KeTn KeTy
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The finite element solution of the parabolic equation (7) can be written as

Np,
(2, 7) = Z zi(7)pi(2),

and the unknown vector z(7) = [z1(7), ..., zn, (7)]7 satisfies the first order ODE system:
Mz (1) = —Lz(T) 7 € (0,00),
(9)
z(0) = v,
where v = [vy,...,vp,]|T collects the coefficients of the projection of v onto the finite element

space Vj,.

Remark 2. The finite elements stiffness matriz defined in (8) naturally includes the homogeneous
Neumann boundary condition. In the case different boundary conditions or more general elliptic

operators were needed, the following argument would still hold, provided a switable modification of
L.

System (9) can be solved exactly leading to the following expression involving the initial condi-
tion of the system and a time-dependent matrix exponential:

(10) z(1) = e v,

with A := M~'L. We stress that, since M is a real symmetric positive definite matrix, A is
well-defined. Moreover, since L is also real symmetric and non-negative definite, it follows that A
has a real spectrum and is non-negative definite as well.

By substituting expression (10) in (6) we obtain the following discretisation in space of the
fractional operator L3 v:

(11) O°[v] := F(is) /000 (efTAV — v) 761113
° dr
(12) = {r(l—s) /0 (e7™ ~1y,) |V

where Iy, € RV»*Nr denotes the identity matrix and the second equality follows from the vector
v being independent from the integration variable 7.

Lemma 1. If a matriz B € RY*YN s non-negative definite and diagonalisable, then

1 e dr
13 B = —— B _Iy) ——.
( ) F(*S) /0 (6 N) ,7_1+s

Proof. Let B = VAV ™! be a diagonalisation of B where A = diag(\y,...,Ay) is the diagonal
matrix of the eigenvalues of B, and V is the matrix whose j-th column is the eigenvector corre-
sponding to A; for j = 1,...,N. If f is a function defined on the spectrum of B, then f(B) can
be written as

(14) f(B) =V @A)V

where f(A) := diag(f(A\1),..., f(An)). Moreover, for all A > 0, by integration by parts and by
using the definition of the function I'; it can be shown that

s 1 <, dr
(15) A _F(_S)/O (eT™ 1) pres
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Therefore, combining (14) and (15) it is straightforward to see that the matrix function within
square brackets in (12) is exactly the fractional power, with exponent s, of the matrix B. O

Owing to the previous Lemma, the space discrete counterpart of L3 v for a given function v,
previously denoted by ©%[v], is nothing but the matrix-vector product A®v.

4.2. Semi-discrete Fractional Monodomain. The semi-discrete unknowns of system (3) on
the grid nodes are given by

uy (1) w;(t)
u(t) = : w;(t) = ji=1,...,p,
un, (t) Wj,Np, (t)

where p denotes the number of state variables in w.
The semi-discrete variables are then given by

Np Np
up(z,t) = Zui(t)%(ﬂ?) wjn(x,t) = ij,i(t>90i($> J=1...p

By letting w = [w{ (t),...,w} (¢)]”, the spatial discretisation of (3) can be rewritten as:
du .
XCmE + A%u+ xLion(u, W) = Igim  in (0,7)
(16)
d
dltv = R(u,w) in (0,7)

coupled to the initial conditions u(0) = up and w(0) = wy.

The advantage of considering the expression in (12) rather than just looking at (11) is that
this formulation will allow us to use a semi-implicit temporal scheme for the numerical solution
of the Monodomain equation (the diffusive term is considered at the current time step and only
the reaction part is evaluated at the previous time iteration), thus avoiding the severe time step
restriction that a fully explicit scheme would require for stability.

4.3. Time marching scheme. The ODE system (16) is discretised in time via a semi-implicit
Euler scheme in which the diffusion term is treated implicitly while the reaction term is evaluated
at the current time step. Let At > 0 and N; = T/At: for the sake of simplicity in presentation,
we consider here a uniform grid of time points ¢, = nAt with n =0, ..., N, but adaptive schemes
in time can be considered as well, and will be the object of further investigation. We denote
u™ := u(t,) and w™ := w(t,). The value of u»*? and w(»t1) is computed at each time step
in two stages following the strategy proposed by Whiteley [39]. First, we compute the updated
value of the transmembrane potential by solving the first equation in (16), involving the fractional
operator A®:

a1 g
At

Then, we use the newly computed u(**) in the second equation in (16). This way, most of
the ODEs involved (corresponding to the six gating variables for the Beeler-Reuter ionic model)
become linear in the corresponding differentiation variable. Hence, although an implicit scheme is
used, the updated value of w("*t1) can be explicitly expressed in terms of only u(»*t! and w(™.
Only a small nonlinear system corresponding to the remaining variables (the calcium concentration
for the Beeler-Reuter model) needs to be solved at each time step: in our numerical simulations
we used the modified Newton method with the Jacobian evaluated at the first iteration.

(17) XCom + A%u Y L (0™ w ™) = L.
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By rewriting equation (17) as

At
18 T A* ) u ) = p™)
( ) ( Nh, + XC'nL ) u
with
At 1
(19) b(n) = u(n) + a |:Iwn(u(n)aw(n)) + XIstim:| )
it is immediate to see that at each time step the approximation of f(A)b(™ with
At N\
20 A):= (1 ——A°
(20) )= (T, + - 4°)
is needed.

4.4. Contour integral method. The solution of equation (18) is computed with one of the
approaches proposed in [17], namely the Contour Integral (CI) method. This method is based on
the expression of f(A) as a contour integral in the complex plane winding around the spectrum of
A in a counterclockwise direction.

This integral is approximated via a suitable quadrature formula with ncpy nodes so that, given
a matrix A € RV>*YN and a vector b € R, one has

nciM
(21) F(A)b % fuomy (Ab =" w,(&1y — A)~'b,
r=1
where w, and &, represent suitable quadrature weights and complex shifts, respectively.

A detailed discussion on the implementation of the CI method is out of the scope of the present
paper and we refer the reader to [40] and in particular to [17] for the case of interest, i.e., the
case of a singular matrix A due to the homogeneous Neumann boundary conditions imposed.
Nevertheless, we recall some important features of the method.

The computation of fy,,, (A)b requires the solution of ncmv independent linear systems of the
form (¢Iy — A)y = b. Since A = ML, the considered linear systems can be equivalently
rewritten as (.M — L)y = Mb, which in turn can be efficiently solved exploiting the fact that M
and L are sparse and easily assembled finite element matrices. Hence, the full matrix A is never
formed. In addition, the solution of the ncry linear systems can be implemented in parallel.

Let f be an analytic function in C\ (—o00,0]. When A is a real positive definite matrix, the
number of quadrature nodes of the CI method needed to obtain a specified accuracy in the approx-
imation of f(A)b increases asymptotically as log(A1/An) (see Section 3.1 of Burrage et al. [17]),
with A; and Ay denoting the minimum and maximum eigenvalues of A, respectively. In fact, as
shown by Hale and colleagues (Theorem 2.1 in [40], here rewritten according to our notation),

(22) 1£(A) = Facns(A)]| = O™ mome/(esCr/2)1),

When homogeneous Neumann boundary conditions are considered (the real matrix A is only
semi-positive definite and A\; = 0), similar considerations can be made. This time, to obtain a
specified accuracy ncpy increases asymptotically as log(A2/An), with Ao being the first positive
eigenvalue of A (see relative discussion in Section 4 of Burrage et al. [17]).

Note that once again, when A = M 'L with sparse M and L, the eigenvalues Ay and Ay can
be efficiently estimated without the need of assembling the matrix A (e.g., see Chapter 5 in [41]).

Remark 3. In the classical Monodomain the update of the potential only requires the solution of
one real linear system at each time step. The computational cost required by the solution of the
fractional Monodomain model instead can be quantified by the initialisation step (to identify the
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quadrature weights w, and the shifts &) and the nciv complex linear systems that have to be solved
at each time iteration.

5. NUMERICAL RESULTS

In this section we present some numerical simulations to illustrate the features of the fractional
Monodomain. The nonlocality of the fractional operator requires a finer mesh, compared to the
classical differential operator, in order to capture sharp propagation fronts, typical of electrophysi-
ology. This drawback was already evident for one-dimensional problems (see, e.g. [18]). Resorting
to a finer mesh is an adequate solution, at the cost of higher CPU times. We present here numeri-
cal simulations on two dimensional domains, discretised with unstructured meshes. Our numerical
results show that a two-dimensional setting is already sufficient to appreciate the effect of using
a fractional operator in the propagation of electrophysiological waves. We describe the myocytes
behaviour by the Beeler-Reuter model [37], and we consider a time step At = 0.1 ms, which is
sufficiently accurate to capture its action potential dynamics. We trigger a localized stimulus of 2
ms at the beginning of the test, and we run the simulation until the whole domain has recovered
to its initial resting condition.

We run simulations for different values of the fractional parameter s: we choose s = 1 (classical
Monodomain), and s = 0.9, 0.8, 0.7 (fractional cases). Although smaller values could be considered,
we observe that these choices of s are sufficient to obtain a meaningful comparison between the
local and the nonlocal cases, and to highlight significant trends in the results.

We consider four different test cases. In the first three tests, the computational domain is
Q =[0,1] x [0,1] cm?, discretised by an unstructured grid consisting of 69 177 nodes and 137 552
elements, with a characteristic mesh size hyax = 0.0076 cm. In order to minimise the effect of
the boundary in the APD dispersion, we consider the initial stimulus to occur in the bottom left
corner of {2, namely in a circle of radius r = 0.1 cm centred in (0,0). We highlight the effects of
the fractional operator in terms of the difference in propagation speed and the APD dispersion.
The first test considers an isotropic domain, while the second and third tests account for fibres
directionality. Finally, the fourth test is performed on a cardiac slice.

All our numerical simulations were performed in MATLAB (R2016a, The MathWorks Inc.,
Natick, Massachusetts, US). In particular, the CI method was implemented following the lines of
code provided in [17] and using the subroutines from Driscoll’s Schwarz-Christoffel toolbox [42] for
the Jacobi elliptic functions required in the computation.

5.1. Computational considerations on the Contour Integral method. We devote this sec-
tion to discuss the computational accuracy and efficiency of the CI method. Let A = M~'L,
where M and L denote respectively the finite element mass and stiffness matrices of the problem
associated with the computational domain = [0,1] x [0,1] cm?, that is used in the numerical
tests presented in the following Sections 5.2-5.4. Let f(A) be as in equation (20), where At = 0.1
ms, while the other coefficients are given in Table 1. We test the performance of the CI method
in the approximation of f(A)b with s = 0.9,0.8,0.7, for different choices of the vector b, different
matrices A, and different values of the parameter ncyy.

In studying the accuracy of the method, we first consider the case of an isotropic tissue with
constant conductivity o (as described in detail in Test 1 - Section 5.2). We consider here b as
the right-hand side of equation (19) with u™ and w(™ representing the numerical solution of the
classical Monodomain model computed at three different time points. Specifically, we choose the
time points ¢ = 100, ¢ = 200, and ¢ = 300 ms in order for the vector b to reflect different moments
in the spatial dynamics of the membrane potential. We study the computational error in function
of the number of quadrature points ncrv. Following Burrage et al. [17], the exact value of f(A)b
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is replaced by a reference solution computed with ncpy = 100 and denoted by f100(A)b. Figure 1

shows the relative error
HflOO (A>b B fnCIM (A)b”OO
| f100(A)b|| o

as a function of ncyy for the different vectors b considered. In each plot, solid lines represent the

relative error while the dashed line is the exponentially decaying function e~ nem/(10g(An /A2)+3)
(which does not depend on the particular choice of s nor b).

t=100 ms t=200 ms t=300ms
100 13 s=09 10° s=09 10° s=09
AN s=08 s=08 s=0.8
o \\ —s=07 —s=07 —s=07
8 \\_ |~ — theor decay — — theor decay — — theor decay
[}
2 10° 10 10°
E
[}
o
10710 10710 J 107 N
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
nCIM nCIM nCIM

FIGURE 1. Relative error decay in the computation of f(A)b as a function of the
number of quadrature points in the CI method. A is fixed, f as in equation (20), b
computed as the right-hand side of the classical Monodomain equation at ¢ = 100
ms (left), t = 200 ms (centre), and ¢ = 300 ms (right).

For each of the three cases, the relative errors in the computation of f(A)b for different values
of the fractional parameter s are practically indistinguishable, indicating that the performance of
the method is independent from the values of s considered. Moreover, in all cases the numerical
error matches very well the predicted theoretical decay showing a consistent performance also as
the simulation time advances.

We then study the performance of the CI method under different tissue characteristics. In
particular, we consider the case of anisotropic tissue with fibres aligned with the x axis (as in Test
2 - Section 5.3) and anisotropic tissue with rotating fibres (as in Test 3 - Section 5.4). Different
assumptions on the isotropic character of the tissue correspond to modifications of the stiffness
matrix L. Hence, the eigenvalues Ao and Ay of the matrix A change accordingly, in general
yielding different slopes in the exponential decay of the error (22). In Figure 2 we show the results
for s = 0.8 and the vector b being the right-hand side of equation (19) obtained via the classical
Monodomain at ¢ = 200 ms (similar results were obtained for s = 0.9,0.7 and ¢t = 100, 300 ms). In
all cases, the expected theoretical behaviour is well matched by the numerical experiments.

We now turn our attention to the computational cost of the CI method given by the initialisation
phase (identification of the quadrature weights w, and the shifts &), and by the ncmy linear systems
that need to be solved at each time step. Since these systems are independent from each other,
they are well-suited for a parallel implementation of their solution. Although needed in the case
of large three-dimensional problems, massive parallelisation is beyond the scope of this paper, but
some considerations are still in order. Given the reasonable size of the linear system to be solved,
we consider here only the scenario in which each system is assigned to one core, thus minimising
the communication between processors. Figure 3 shows the cost of computing the matrix function
vector product fn.,,(A)b for s = 0.9,0.8,0.7, as a function of ncny, when 1, 5, or 10 cores of
the same multi-core machine are used in the computation. The vector b is the right-hand side of
equation (19) obtained via the classical Monodomain at ¢ = 100 ms (once again analogous results
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FIGURE 2. Relative error decay as a function of the number of quadrature points
in the CI method under different tissue assumptions. Left: Isotropic case (Test 1).
Centre: Anisotropic with fibres aligned to the x axis (Test 2). Right: Anisotropic
with rotating fibres (Test 3).
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F1GURE 3. CPU times for the computation of f,,;,, (4)b with s = 0.9,0.8,0.7 as a
function of nenv on 1 core (left), 5 cores (centre), and 10 cores (right), respectively.
Top row: CPU time required for the initialisation of the CI method. Bottom row:
CPU time of the actual solution of the ncpy independent linear systems.

were obtained for ¢ = 200,300 ms). Since the initialisation phase of the CI method depends on the
value of ncyv and hence had to be performed before each computation, we split its cost from the
cost of solving the linear systems in order to obtain a clearer picture.

We observe that CPU performance is essentially independent of the particular value of s con-
sidered. Moreover, while there is a clear reduction of CPU times when multiple cores are available,
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the initialisation cost is not significantly reduced by parallelisation and could hence take its toll in
terms of the total cost required by the CI method. However, owing to Figure 1 and Figure 2, the
same number of quadrature points ncpy can be used for the entire simulation of spatial propaga-
tion via the fractional Monodomain, so that the CI initialisation has to be performed only once.
Consequently, the efficiency of the algorithm is solely determined by the amount of resources avail-
able for parallelisation. In particular, as the ncpy linear systems are expected to be equivalent in
terms of computational cost, it is reasonable to assume that the ideal solution is to use a number
of cores equal to ncpy in order to evenly distribute the computational load among cores, as well
as minimise communication and memory requirements.

In light of the above considerations, we set noiy = 24 in all our simulations, as it appears to
generate a sufficiently accurate approximation (relative error of the order of 107°) in all considered
scenarios, and we implement the CI method on 24 cores of the BCAM cluster by using the Parallel
Computing Toolbox of MATLAB.
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F1GURE 4. Computational cost at each time step of the solution of the clas-
sical Monodomain equation (s = 1) and of the fractional Monodomain (with
$=0.9,0.8,0.7) as the simulation time advances. The fractional case is solved by
setting nom = 24 and parallelising the solution of the 24 linear systems on 24
cores.

Finally, in Figure 4 we show the computational cost required at each time step by the solution
of the single linear system in the classical Monodomain and by the solution of the fractional
Monodomain (with s = 0.9,0.8,0.7), for the first 350 ms of simulated time. The settings of
the problem are the ones of Test 1 in the forthcoming Section 5.2. The extra computational
cost of the fractional Monodomain compared to the classical Monodomain is clearly visible, but
the performance of the CI algorithm is practically independent from the value of the fractional
parameter s. The weight of the initialisation phase of the CI method is evident in the first step of
the simulation. However, it plays no role in the rest of the simulation where the computational cost
is determined by the parallelised solution of the 24 linear systems. In all cases, the performance
of the algorithm remains fairly constant during the whole simulation.

5.2. Test 1: isotropic tissue. In the first test, we consider an isotropic tissue. Notice that in
this case we have £L = —g A, for some constant conductivity o > 0.

The smaller the value of s the stronger is the deviation from homogeneous tissue (s = 1): as a
consequence, we expect both the propagation speed to reduce and the APD dispersion to increase
with the reduction of s. To assess the difference in propagation speed of the excitation wave, we
set 0 = 0.1mS - ecm™!, we randomly select 100 nodes in 2 (see Figure 5, left), and consider their
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activation time, as a function of distance from the stimulus region, for different values of s. In
Figure 5 (top right) we can see the expected behaviour of the activation time, indicating that
the propagation gets slower as s decreases. In the same figure (bottom right) we plot the action
potential in the centre of the domain (0.5, 0.5) for the considered values of s: once again, we notice
an increasing delay in the activation of the node, as s is reduced. Moreover, in line with the results
for the one-dimensional case [18] we observe a reduction in both spike height and AP duration as
s decreases, as well as an increase in width of the AP foot. This was also observed in [5], where a
fractional model with order & = 1.75 (s = a/2 = 0.875 according to our notation) was shown to
best replicate the effects of wavefront conduction in tissue depolarization of observed experimental
data, and in particular AP foot morphology.

n
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FIGURE 5. Isotropic tissue. Activation time and action potential. Left: location
of the 100 randomly selected nodes. Right: activation times (top) in the random
points for different values of s, and action potentials (bottom) in point (0.5,0.5),
highlighted in red.

As stated in [5], “at the tissue level, macroscopic properties such as conduction velocity must be
captured by the specific propagation model, regardless of its mathematical description”. In order
to obtain comparable conduction velocities and hence assess the APD dispersion on comparable
activation times for all values of s, in the second part of this test we rescale the conductivity
coefficient ¢ of the Fractional Monodomain with non-integer s (see Table 1) so that full domain
activation is obtained at the same time of the case s = 1.

In Figure 6 (top left) we plot the APD dispersion (in ms) as the excitation wave propagates
away from the source. All cases exhibit dispersion but, while in the classical s = 1 case this occurs
only near the stimulus site and when the wave approaches the far boundary, in the remaining cases
this feature is evident in the whole 2, and is more pronounced as s decreases. In the remaining
plots of Figure 6 we show the APD dispersion along three different lines: the main diagonal y = =z,
y = 0.5z, and the lower border y = 0. The more pronounced effect is observable along the diagonal,
which is not surprising, due to the longer path the wave has to travel before experiencing boundary
effects.

400
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FIGURE 6. Isotropic tissue. APD dispersion. Top left: APD dispersion on the

computational domain €2 for different values of s. Top right to bottom right: APD
dispersion along three different lines (y = z, y = 0.5z, and y = 0).

Once again this is consistent with previous numerical results obtained in the one-dimensional
case in [18] and with the shortening of APD during propagation (known as inverse AT-APD
relationship) present in experimental data and well matched in [5] by a one-dimensional fractional
diffusion model.

General Cp =1puF-em™? x =2000cm™*

Stimulus Ltim = 10° pA-cm™3

Source 22 +y? < r? r=0.1
s 1 0.9 0.8 0.7 Units

Conductivities | @ 0.1 ]0.2354 | 0.6246 | 2.1396 | mS - cm~!
o | 0.2 0.4620 | 1.2780 | 4.5550 | mS - cm ™!
o | 0.02 | 0.0462 | 0.1278 | 0.4555 | mS -cm ™!

TABLE 1. Model parameters for Tests 1-3.

5.3. Test 2: anisotropic tissue. In this second test we consider anisotropic tissue with fibres
aligned with the z axis, namely a;(z,y) = [1,0]7 and a;(z,y) = [0,1]7. In this case the fractional
operator is the s-th power of £L = —V - DV. We assume constant conductivities both along (o;)
and across (oy) the fibres, with o; = 100¢. As we did in the second part of the previous test, we
rescale the coefficients (see Table 1) so that the activation times are comparable (Figure 7, top
left) and we analyse the APD dispersion induced by the fractional operator for different values of
s. As in the isotropic case, we observe APD dispersion in the whole domain Q for s < 1, while
the feature is evident only near the stimulus and near the boundary in the classical case s = 1.
Moreover, it can be observed (Figure 7, top right to bottom right) that the APD dispersion gets
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more pronounced as one moves away from the principal direction of fibres (line B vs line C), and
the largest dispersion occurs in the direction normal to the fibres (line A).

5.4. Test 3: anisotropic tissue with rotating fibres. In this third test we consider again
anisotropic conductivity (o; = 100;), but with fibres continuously rotating counterclockwise
around the point (0,1), see Figure 8 (top left). Namely, we consider for (z,y) €
B mx . mx1T B . TT mx T
a(z,y) = |:COS S sino| a(z,y) = [f sin —-, cos —~

Once again, the coefficients are rescaled as in Test 2 so that the activation times are comparable
and we analyse the APD dispersion induced by the fractional operator. In Figure 8 (top right) we
plot the activation time, highlighting how the propagation speed reflects the stronger conductivity
along the principal fibre direction. In Figure 8 (bottom) we plot the APD dispersion along curve
A (left), a vertical line next to the left boundary of €2, and along curve B (right) that follows the
principal fibre direction. Again, it can be observed that the APD dispersion is less pronounced
along the principal fibre direction. This feature can be globally observed in Figure 9, where we
plot the APD dispersion on the whole 2 for the considered values of s.

5.5. Test 4: cardiac slice. In this last test we use as computational domain 2 a geometry
obtained via manual segmentation of a real cardiac slice image taken from [43]. The domain {2 is
discretized by an unstructured triangular grid consisting of 375489 nodes and 745579 elements,
with a characteristic mesh size Ay = 0.0lecm. Not having a fibres description available for the
particular geometry considered, we assume in this test an isotropic conductivity tensor D = ols.
If fibre directions were available, they would be easily incorporated by using the technique of the
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FIGURE 7. Test 2. Anisotropic tissue: activation time and APD dispersion. Top
left: activation time. Top right to bottom right: APD dispersion along lines A,
B, and C.
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previous test cases. Once again o has been rescaled among the considered values of s, in order to
have comparable activation times, that we plot in Figure 10. We refer to Table 2 for the parameters
used in this case.

In Figure 11 we plot the APD dispersion on the slice for the considered values of s. All cases
exhibit dispersion around the source, and close to the far boundaries. Dispersion is also particularly
evident in regions where two wavefronts collide. This feature could not be observed in the previous
tests, since our settings did not trigger any colliding waves. Once again, for s < 1 APD dispersion
is observed in the whole domain €2, and is increasing as s gets smaller.

General Cp = 1pF-cm™2 x = 2000cm™!
Stimulus Lim = 10° pA-cm ™3
Source (x—3.25)%2+ (y—0.5)2<r? r=0.05
Conductivities > 1] 0.9 0.8 0.7 Units

o| 1]2354]6.246 | 21.396 | mS-cm™!

TABLE 2. Model parameters for Test 4.

6. CONCLUSIONS

In this paper we introduce a space-fractional extension of the Monodomain model to account for
both fibres anisotropies and tissue micro-heterogeneities in the modelling and numerical simulation
of cardiac electrophysiology. The numerical results we presented here show the characteristic
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features of both aspects. Fibers directions trigger anisotropic propagation patterns, as in the case

of the classical Monodomain and Bidomain models. In addition, powers of the diffusion operator in
the Fractional Monodomain model result in behaviours that are physically expected in the presence
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FI1GURE 9. Test 3. Anisotropic tissue with fibres rotation. APD dispersion on €2
for the considered values of s.
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of structural micro-heterogeneities of the tissue, such as a wider action potential foot, a lower peak
of the membrane voltage during an action potential, and an evident dispersion of the Action
Potential Duration as the excitation wave moves away from the stimulus source. As expected from
the theory of fractional operators, these effects get more pronounced ad the fractional exponent
s € (0,1) moves away from 1, the homogeneous case. These results are extremely promising, and
we will validate the model against experimental data. Still, further work needs to be done to
improve the computational efficiency of the numerical solution. The main bottleneck in using a
space-fractional operator is the need of very fine spatial grids (much finer than in the classical
case) due to the fact that AP shape changes with the fractional order. In particular, as s is
reduced, the model produces APs that display a sharper peak. As it was already observed in
the one-dimensional case in [18], this is an intrinsic feature of the Fractional Monodomain and it
does not depend on the conduction velocity. The higher spatial resolution required to accurately
capture the travelling pulse of the fractional case is thus unavoidable (at least in proximity of the
propagating front). In addition, the numerical simulation of the Fractional Monodomain requires
higher computational times than that of the classical Monodomain. In this paper we used the
Contour Integral method (CI) from [17]: it is effective but intrinsically slow, although parallel.
We are currently investigating more efficient ways to compute the matrix power A®, and we plan
to compare the efficiency of the CI with an explicit scheme based on the approximation of the
spectral Fractional Laplacian introduced in [16]. Finally, the method introduced here associates a
given value of s to the entire spatial domain. This amounts to implicitly assume a uniform level
of micro-heterogeneity across the whole tissue. This is a limiting assumption, that we plan to
overcome in a forthcoming paper.
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