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Abstract

Prior to using a diagnostic test in a routine clinical setting, the rigorous evaluation
of its diagnostic accuracy is essential. The receiver operating characteristic (ROC)
curve is the measure of accuracy most widely used for continuous diagnostic tests.
However, the possible impact of extra information about the patient (or even the envi-
ronment) on diagnostic accuracy also needs to be assessed. In this paper, we focus on
an estimator for the covariate-specific ROC curve based on direct regression modelling
and nonparametric smoothing techniques. This approach defines the class of gener-
alised additive models for the ROC curve (ROC-GAM). The main aim of the paper is
to offer new inferential procedures for testing the effect of covariates on the conditional
ROC curve within the ROC-GAM context. Specifically, two different bootstrap-based
tests are suggested to check (a) the possible effect of continuous covariates on the ROC
curve; and (b) the presence of factor-by-curve interaction terms. The validity of the
proposed bootstrap-based procedures is supported by simulations. To facilitate the ap-
plication of these new procedures in practice, an R-package, known as npROCRegression,
is provided and briefly described. Finally, data derived from a computer-aided diag-
nostic (CAD) system for the automatic detection of tumour masses in breast cancer is
analysed.

∗This paper has been published in Statistical Methods in Medical Research. DOI:
10.1177/0962280217742542
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1 Introduction

In many biometrical applications, the classification of individuals or observations based on
covariate information is one of the most important goals of a statistical analysis. For exam-
ple, the classification of patients as healthy or diseased (to consider only the most simple
classification task) on the basis of demographic information and individual disease history
would be the point of departure for subsequent treatment. In this context, a diagnostic
test can be any diagnostic procedure conducted to differentiate between different types of
patients, e.g. healthy versus diseased, or patients in different stages of disease progression.
However, classification of an individual’s status based on the result of a diagnostic test
is usually not error-free and some individuals will be misclassified. Accordingly, before
the routine application of a diagnostic test in clinical practice, any errors of classification
must be quantified in order to check a diagnostic test’s validity or invalidity, i.e. diagnostic
accuracy, or ability to discriminate between alternative health states must be measured.

In the case of binary or dichotomous tests, diagnostic accuracy is often summarised
by means of the true positive fraction (TPF) and the false positive fraction (FPF). Let
Y denote the result of the diagnostic test (Y = 1 for diseased and Y = 0 for healthy),
and D the dummy variable that indicates the true disease status (D = 1 for presence and
D = 0 for absence of the disease). The TPF or ‘sensitivity’, then, is the probability of an
individual being correctly classified as diseased, i.e. TPF = P (Y = 1 | D = 1), whereas
the FPF, or ‘1−specificity’, is the probability of a healthy individual being falsely classified
as diseased, i.e. FPF = P (Y = 1 | D = 0).

For tests with continuous or ordinal results, the most widely used measure of diagnos-
tic accuracy is the receiver operating characteristic (ROC) curve (Krzanowski and Hand,
2009; Pepe, 2003; Zou et al., 2002). The ROC curve extends the concepts of sensitivity
and specificity to the continuous/ordinal case by depicting these quantities for all pos-
sible cut-off values or decision thresholds c applied to the test result. In other words,
the ROC curve relies on all possible transformations of a continuous/ordinal test to a bi-
nary test. More specifically, the ROC curve is defined as the set of all TPF-FPF pairs
{(TPF (c) , FPF (c)) , c ∈ (−∞,∞)} that can be obtained by varying the cut-off value c,
where TPF (c) = P (Y ≥ c | D = 1) and FPF (c) = P (Y ≥ c | D = 0). When the diagnos-

tic test Y is continuous, the ROC curve is usually represented as ROC (p) = SD

(
S−1
D̄

(p)
)

for 0 ≤ p ≤ 1, where SD (c) = P (Y ≥ c | D = 1) and SD̄ (c) = P (Y ≥ c | D = 0).
It is well known, however, that in many situations the discriminatory capacity or ac-

curacy of a diagnostic test can be affected by covariates (see Pepe, 2003, pp 48-49, for
examples). In such cases, failure to incorporate information furnished by covariates in
the ROC analysis may lead to erroneous conclusions (Janes and Pepe, 2008, 2009; Pardo-
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Fernández et al., 2014). Denoting as X the d-variate vector of covariates we are interested
in, the conditional or covariate-specific ROC curve, given a covariate value x, is defined as

ROCx (p) = SD

(
S−1
D̄

(p | x) | x
)
, 0 ≤ p ≤ 1, (1)

where, by a slight abuse of notation, SD (c | x) = P (Y ≥ c | D = 1,X = x) and
SD̄ (c | x) = P (Y ≥ c | D = 0,X = x). Note that a continuum of different ROC curves
(and therefore, a continuum of different diagnostic accuracies) is obtained by varying the
value x in the range of X. As a consequence, the conditional ROC curve can be viewed as
a tool which helps to identify those patients’ strata (or subpopulations) that may benefit
from the application of the diagnostic test, as well as those for which the test does not
provide valuable information.

Estimation of the conditional ROC curve has been explored in the statistical litera-
ture from (semi) parametric and nonparametric perspectives, and within frequentist and
Bayesian paradigms. A detailed review and comparison of (semi) parametric frequentist
proposals can be found in Rodŕıguez-Álvarez et al. (2011), whereas the paper by Pardo-
Fernández et al. (2014) mainly focuses on the nonparametric counterparts. In brief, there
are two main strategies for approaching estimation: one based on estimating the con-
ditional cumulative survival functions involved in the definition given in (1) (López-de-
Ullibarri et al., 2008; Inácio de Carvalho et al., 2013); and the other based on modelling
(and estimating) the effect of covariates on the ROC curve through regression models.
In the latter case, the literature on ROC regression techniques has led to two different
methodologies: ‘induced’ and ‘direct’ (Pepe, 2003). Induced methodology is based on in-
ducing the expression of the conditional ROC curve through regressing the diagnostic test
on the available covariates separately in healthy and diseased individuals (Faraggi, 2003;
González-Manteiga et al., 2011; Pepe, 1998; Rodŕıguez-Álvarez et al., 2011b; Rodŕıguez
and Mart́ınez, 2013; Zheng and Heagerty, 2004; Yao et al., 2010). On the other hand, di-
rect methodology directly regresses the ROC curve. This methodology has yielded (1) the
general class of ROC-GLM regression models (Alonzo and Pepe, 2002; Cai, 2004; Cai and
Pepe, 2002; Pepe and Cai, 2004), due to its similarity to generalised linear models (GLM,
McCullagh and Nelder, 1989); and (2) its extension to a more flexible regression setting,
the ROC-GAM class (Rodŕıguez-Álvarez et al., 2011a), along the line of the generalised
additive model (GAM, Hastie and Tibshirani, 1990).

The aim of this paper is twofold. Firstly, as in any regression context, in the ROC re-
gression framework it is important to have formal procedures for testing model assumptions
and/or effects of covariates. In spite of its importance, to the best of our knowledge this
topic has received little attention in the statistical literature, especially in the nonparamet-
ric framework. Interesting contributions to the topic can be found in the paper by Cai and
Zheng (2007), where several model-checking procedures for (semi) parametric approaches
are presented, and in the paper by Rodŕıguez-Álvarez et al. (2011a), where a bootstrap-
based test to check for the effect of a continuous covariate is proposed. This paper thus
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focuses on presenting new inferential procedures for testing the effect of covariates over
the conditional ROC curve. Specifically, we present two different bootstrap-based tests to
check (a) the possible effect of continuous covariates on the ROC curve; and (b) the pres-
ence of factor-by-curve interaction terms. Both tests are proposed within the ROC-GAM
context.

Secondly, nowadays there is an undeniable need for software development of new statis-
tical methods. In fact, the implementation of new methodological advances in user-friendly
software has dramatically increased in the last few years. This tendency has had an im-
portant impact on shortening the time from the development of new statistical advances
to their application. Therefore, accompanying this paper we provide a free R-package
(R Core Team, 2017) called, npROCRegression. The package allows for the practical ap-
plication of several nonparametric approaches to the inclusion of covariates in the ROC
curve. More precisely, npROCRegression implements the nonparametric induced and di-
rect proposals as presented in Rodŕıguez-Álvarez et al. (2011b,a), as well as the inferen-
tial procedures described in this paper. The package is freely available from CRAN at
https://cran.r-project.org/package=npROCRegression. We hope that the existence of
easy-to-use software will encourage the use of these techniques in clinical research.

The remainder of the paper is structured as follows: Section 2 briefly discusses the
statistical literature on the inclusion of covariate information in the ROC regression frame-
work. Section 3 presents in more detail the class of ROC-GAM regression models, and in
Section 4 the proposed bootstrap-based procedures are introduced. The performance of
these procedures have been evaluated by means of simulations, and results are presented in
Section 5. Additional results have been added as online Supplementary Material. Section
6 describes the npROCRegression R-package. We illustrate our approach and the usage of
the package in Section 7 using data from a computer-aided diagnostic (CAD) system. The
Discussion closes the paper. Some technical details are made available in an Appendix.

2 Modelling covariate effects on the ROC curve

This section reviews the literature on ROC curves in the presence of covariate information.
It is beyond the scope of this paper to present an exhaustive review, and we refer the
readers to Pepe (2003), Rodŕıguez-Álvarez et al. (2011) and Pardo-Fernández et al. (2014)
for a more in-depth survey. However, with this section we aim to put different modelling
strategies for the incorporation of covariates on the ROC curve into context. More precisely,
we focus here on those that are considered to be within the general framework of regression,
namely ‘induced’ and ‘direct’ methodologies. A qualitative comparison of both approaches
is also presented. The section ends with a presentation of several summary statistics of the
conditional ROC curve.
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2.1 ROC regression approaches

2.1.1 Induced ROC regression methodology.

This approach is based on firstly modelling the effect of covariates on the diagnostic test,
and then compounding the conditional ROC curve. In its most general specification, a
location-scale regression model is assumed for the classification variable Y in each popula-
tion separately

YD̄ = (Y | D = 0) = µD̄(X) + σD̄(X)εD̄,

YD = (Y | D = 1) = µD(X) + σD(X)εD,

where, for j ∈ {D̄,D}, µj (x) = E (Yj |X = x) and σ2
j (x) = V ar(Yj |X = x) are the

conditional mean and the conditional variance of Yj given X = x, respectively. The
error εj is assumed independent of the covariate X, with zero mean, unit variance and
cumulative survival function Gj , i.e., Gj (c) = P (εj ≥ c). With this configuration, and
given the independence of the errors and the covariates, it follows that

ROCx(p) = GD

(
µD̄(x)− µD(x)

σD(x)
+
σD̄(x)

σD(x)
G−1
D̄

(p)

)
.

Note that, under this approach, the effect of the covariates on the ROC curve is expressed
in terms of their effects on the mean and variance of the diagnostic test in healthy and
diseased subjects.

In a parametric or semiparametric framework, important references for the estimation of
induced methodology include Pepe (1998), Faraggi (2003) and Zheng and Heagerty (2004).
All these papers propose modelling the covariate effects on the result of the diagnostic test
parametrically. Nonparametric specifications of the conditional means and variances have
been considered in Yao et al. (2010), González-Manteiga et al. (2011), Rodŕıguez-Álvarez
et al. (2011b) and Rodŕıguez and Mart́ınez (2013). The first three papers propose fully
nonparametric estimators based on kernel-type regression techniques (Fan and Gijbels,
1996). We should note that these proposals are restricted to one-dimensional covariates.
The proposal by Rodŕıguez and Mart́ınez, framed in a Bayesian setting, allows for incor-
porating multidimensional continuous covariates, but the authors assume that the error
terms are distributed according to a Student’s t distribution.

2.1.2 Direct ROC regression methodology.

In contrast to the induced method, direct methodology directly models the effects of co-
variates on the ROC curve. In this approach, the general form of the conditional ROC
curve is given by the following regression model

ROCx (p) = g (µ (x) + h0 (p)) , (2)
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where function µ collects the effects of the covariates on the ROC curve, h0 is a monoton-
ically increasing baseline function of the FPF, p (responsible for modelling the shape of
the ROC curve), and g is the function linking the covariates and FPF with the conditional
TPFs (i.e., the ROC curve).

In the (semi) parametric framework, different proposals have been suggested in the lit-
erature, which mainly differ in the assumptions made about the function of the FPF, h0 (·)
(see Alonzo and Pepe, 2002; Cai, 2004; Cai and Pepe, 2002; Pepe and Cai, 2004). In all
these approaches the effect of covariates X on the ROC curve is incorporated parametri-
cally, i.e., µ (x) = βTx. Thus, models such as (2) define the so-called class of ROC-GLMs
(Pepe, 2003), due to their resemblance to generalised linear models (GLMs). To the extent
of our knowledge, to date, only the paper by Rodŕıguez-Álvarez et al. (2011a) addresses
the inclusion of covariate information on direct modelling nonparametrically. In that paper
the authors propose to extend the class of ROC-GLM regression models by assuming an
ROC-GAM regression model for the ROC curve. In this case, rather than assuming a
parametric form for the effect of the continuous covariates, it is solely assumed that these
effects can be represented by arbitrary smooth functions. We discuss this approach in more
detail in Section 3.

2.1.3 Qualitative comparison.

As mentioned, there are two different regression methodologies for the incorporation of
covariates into the ROC analysis. From an applied point of view, the natural question
arising is: which one should be used in practice? Unfortunately, there is no simple answer.
Both methodologies present appealing features and may provide valuable information. We
would therefore suggest using both, whenever it is possible.

Regarding induced methodology, its main advantage is that it models covariate effects
on the result of the diagnostic test. Even though, on the one hand, it means that the
modelling of covariate effects on the ROC curve is indirect, on the other hand (a) it allows
for the use of more “standard” regression techniques and model checking procedures than
direct methodology, especially in the parametric framework; and (b) it relates the effect of
the covariates on the mean and variance of the diagnostic test to their effect on the ROC
curve, which can help to understand and explain the covariate impact on the accuracy of
the test. For ease of reading, throughout all of our presentation, covariates affecting the
test results in healthy and diseased populations are assumed to be the same, although this
is not necessarily the case in practice (e.g., disease stage). Induced methodology allows for
the incorporation of specific covariates of healthy or diseased populations, or even both.
Finally, by modelling covariate effects on the variance of the diagnostic test, the shape
of the ROC curve is allowed to vary with the covariates. In regression terminology, this
would be equivalent to including the interaction between the covariates and the FPF, p.
However, in the case that the covariate vector X is multidimensional (and no restrictions
are imposed), heteroskedasticity would also mean that the interaction among all covariates
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(and possibly the FPF) is implicitly incorporated into the “model” for the conditional ROC
curve. This can make the interpretation and visualisation of results considerably difficult,
especially in the presence of several continuous covariates. Moreover, testing for covariate
effects on the ROC curve would become a complex task.

As far as direct methodology is concerned, its obvious advantage is that it directly
evaluates covariate effect on the measure of interest, the ROC curve. As a consequence,
it enables the accuracy of different diagnostic tests to be compared (Pepe, 2003). In ad-
dition, inclusion of multidimensional covariates is straightforward, and interactions among
covariates can be accommodated in a more natural way than through induced method-
ology. Moreover, although it has not been considered here, it is possible to incorporate
the interaction between covariates and the FPF. However, to the best of our knowledge,
none of the approaches presented in the statistical literature ensures that the resulting
interaction estimates are monotonic in the FPF direction as required by theoretical prop-
erties of the ROC curve. This is undoubtedly an interesting topic of research. Finally,
direct methodology also allows the incorporation of disease-specific covariates. It does not,
however, permit health-related information.

2.2 Conditional summary statistics

It is common to summarise the information of the ROC curve by means of single indexes.
We list here those which are most commonly used, and present a summary measure that
is meaningful in the conditional case.

2.2.1 Area under the conditional ROC curve.

The area under the ROC curve (AUC) is possibly the most widely used summary measure
of discriminatory performance. In the conditional case, the AUC is defined as

AUCx =

∫ 1

0
ROCx (p) dp. (3)

The AUCx ranges from 0.5 to 1, taking the value of 0.5 in the case of an uninformative
test and 1 in a perfect test.

The most obvious way to estimate the conditional AUC is to simply plug-in an esti-
mate for the conditional ROC curve in (3), and approximate the integral using numerical
integration methods. However, this approach might not be the most efficient way, and
several methods to directly estimate AUCx have been proposed in the literature. For in-
stance, Faraggi (2003) discusses a fully parametric estimation approach based on induced
modelling. In Dodd and Pepe (2003b,a), and Cai and Dodd (2008), a semiparametric re-
gression model for the conditional (partial) AUC is proposed, similar in spirit to the direct
ROC regression methodology. In a fully nonparametric setting, Yao et al. (2010) present
a “conditional” Mann-Whitney estimator for AUCx estimation. This method has been
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recently generalised to functional covariates by Inácio de Carvalho et al. (2016). In that
paper the authors propose a functional conditional partial area under the specificity-ROC
curve. The estimator by Yao et al. (2010) is a particular case when the sensitivity is not
restricted to a specific interval.

2.2.2 Conditional Youden index.

Another common summary index is the Youden index (Youden, 1950), which, in the con-
ditional case, can be defined as

Y Ix = max
cx
{TPF (cx | x)− FPF (cx | x)}

= max
cx
{SD (cx | x)− SD̄ (cx | x)} (4)

= max
px
{ROCx (px)− px} , (5)

where we use the notation cx and px to emphasise that these values depend on covariate
x. The Y Ix takes values between 0 and 1.0, in the case of an uninformative test and a
perfect test, respectively. The value c∗x, which maximises (4), is frequently used in practice
as a threshold value to separate diseased from healthy status (in those individuals with
covariate value x).

Parametric and nonparametric approaches to the estimation of the conditional Youden
index (and associated threshold value) can be found in Faraggi (2003) and Xu et al. (2014),
among others.

2.2.3 Covariate adjusted ROC curve.

All measures discussed above depict the accuracy of a diagnostic test for specific covariate
values. However, it would be undoubtedly interesting to have a global summary that also
takes covariate information into account. To that aim, Janes and Pepe (2009) propose the
covariate-adjusted ROC curve (AROC), defined as

AROC (p) =

∫
ROCx (p) dHD (x) , (6)

where HD (x) = P (X ≤ x | D = 1). Thus, the AROC curve is an average of conditional
ROC curves, weighted according to the distribution of the covariates in the diseased popula-
tion. It should be noted that when a diagnostic test’s discriminatory capacity is not affected
by covariates, this does not necessarily mean that the conditional ROC curve (which in
this case is common to all covariate values) coincides with the ROC curve obtained when
pooling the data without regard to the values of the covariates. It does coincide, however,
with the AROC curve (see Janes and Pepe, 2009; Pardo-Fernández et al., 2014, for more
details). Consequently, even in those situations where the accuracy of a test does not vary
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with the covariates, inferences based on the pooled ROC curve might be biased, and thus
meaningless. In such cases the AROC curve should be used instead.

To the best of our knowledge, estimation of the AROC curve has been only discussed in
Janes and Pepe (2009), from both (semi) parametric and nonparametric perspectives, and
in Rodŕıguez-Álvarez et al. (2011b), in the context of nonparametric induced modelling
approaches.

3 The ROC-GAM regression model

As discussed before, the ROC-GAM regression model extends the ROC-GLM by allowing
the incorporation of arbitrary nonparametric functions for (some) continuous covariates,
along the line of the generalised additive model. Specifically, the ROC-GAM regression
model is expressed as

ROCx (p) = g

(
β0 + βTxu +

V∑
k=1

fk (xvk) + h0 (p)

)
, (7)

where xu and xv denote subsets of the covariate vector x. Here β0 and β are unknown
regression coefficients (modelling parametric effects of continuous covariates and, by a slight
abuse of notation, categorical covariates) and fk are unknown nonparametric functions of
continuous covariates. Under this approach, h0 is also assumed to be nonparametric (and
unknown). For identifiability reasons (see Hastie and Tibshirani, 1990), a constant β0 is
introduced into the model, and it is required that E (fk (Xkv)) = 0 (k = 1, . . . , V ) and∫ 1

0 h0 (p) dp = 0.
In many situations the effect of a continuous covariate on the ROC curve may vary

across groups defined by levels of a categorical covariate. A generalisation of the ‘pure’
ROC-GAM in (7) is the ROC-GAM with factor-by-curve interactions. Without loss of
generality, let us assume thatX is a two-dimensional covariate, with Xv being a continuous
covariate, and Xu a factor with M levels {1, . . . ,M}. The factor-by-curve ROC-GAM takes
the form

ROCx (p) = g

(
β0 +

M∑
l=1

βlI (xu = l) + f (xv) +

M∑
l=1

f l (xv) I (xu = l) + h0 (p)

)
, (8)

where β0 and {βl}Ml=1 are unknown regression coefficients, and h0, f1 and f l are unknown
nonparametric functions. I (A) denotes the indicator function of event A. In much the
same way as for model (7), the following conditions are required for identifiability

E (f (Xv)) = 0, E
(
f l (Xv)

)
= 0 (l = 1, . . . ,M) and

∫ 1

0
h0 (p) dp = 0,
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jointly with
M∑
l=1

βl = 0 and
M∑
l=1

f l (xv) = 0.

Note that, given the previous constraints, model (8) has been parametrised so it is hi-
erarchical. As a consequence, f is the smooth main effect of covariate Xv, and thus f l

(l = 1, . . . ,M) represent deviations from that main effect for each level of Xu.
Appendix A presents the main steps of the estimation process of the ROC-GAMs (7)

and (8), and we refer the interested reader to Rodŕıguez-Álvarez et al. (2011a) for a more
detailed description. However, for a better understanding of the procedures to be presented
in Section 4, we should note that the proposed algorithm requires the estimation of the
conditional cumulative survival function of the diagnostic test in healthy subjects, SD̄ (· | x)
(Step 2). For that purpose, Rodŕıguez-Álvarez et al. (2011a) suggest modelling the effect
of covariates on YD̄ by a nonparametric location-scale regression model

YD̄ = µD̄(X) + σD̄(X)εD̄ (9)

= βD̄0 + βTD̄Xu +
V∑
k=1

fD̄k (Xkv) + exp

(
αD̄0 + αTD̄Xu +

V∑
k=1

gD̄k (Xkv)

)
εD̄.

For ease of notation, we assume that the sets of covariates whose effects are to be modelled
parametrically and nonparametrically are the same for the conditional mean, the condi-
tional variance, and the conditional ROC curve. Obviously, this might not be necessarily
so. In addition, factor-by-curve interaction terms can also be included. Note that under
(9), it follows that

SD̄ (c | x) = GD̄

(
c− µD̄(x)

σD̄(x)

)
.

4 Testing for effects in ROC-GAM regression models

This section introduces the bootstrap-based procedures proposed to test for: (a) continuous
covariate effect on the ROC-GAM regression model specified in (7); and (b) factor-by-curve
interaction terms in model (8).

Specifically, for model (7) we focus on testing for the effect of those covariates modelled
nonparametrically. Accordingly, for each continuous covariate Xvr in (7), we consider the
null hypothesis

Hr
0 : fr(xvr) = 0.

That is to say, the ROC curve, and therefore the accuracy of the test, is not affected by
covariate Xvr.

For model (8) our interest is focused on the null hypothesis

H0 : f1 (xv) = . . . = fM (xv) = 0,
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namely, that the effect of continuous covariate Xv on the ROC curve does not depend on
the levels of factor Xu.

In both cases we propose the use of various tests based on the estimates of the partial
functions fr, and on the estimates of the interaction curves f l (l = 1, . . . ,M).

From now on, let us assume that we have two independent samples of independently
and identically distributed (i.i.d.) observations (xD̄1 , y

D̄
1 ), . . . , (xD̄nD̄

, yD̄nD̄
) from population

(XD̄, YD̄), and (xD1 , y
D
1 ), . . . , (xDnD

, yDnD
) from population (XD, YD).

4.1 Testing for continuous covariate effect

The test for the null hypothesis

Hr
0 : ROCx (p) = g

(
β0 + βTxu +

r−1∑
k=1

fk (xvk) +

V∑
k=r+1

fk (xvk) + h0 (p)

)
, (10)

versus the general hypothesis

Hr
1 : ROCx (p) = g

(
β0 + βTxu +

V∑
k=1

fk (xvk) + h0 (p)

)
,

is based on the estimate f̂r. To that aim, L1 and L2 norms are considered, yielding the
following test statistics

T|| =

nD∑
j=1

∣∣∣f̂r (xDjvr)∣∣∣ and T2 =

nD∑
j=1

f̂r
(
xDjvr

)2
.

Note that the proposed statistics are measures of deviations from the estimated nonpara-

metric function f̂r to its mean n−1
D

∑nD
j=1 f̂r

(
xDjvr

)
which is forced to be zero during esti-

mation in order to avoid identifiability problems.
It must be remarked that, if the null hypothesis is verified, then T (T|| or T2) should be

close to zero but will be positive. Thus, for an observed value of the test statistic, T o, the
null hypothesis in (10) is rejected if the p-value P (T > T o | H0) < α, where α is a specified
level of significance.

To approximate the distributions of the test statistics under the null hypothesis a
general bootstrap procedure is proposed, which consists of the following steps:

Step 1. Estimate µD̄ (·), σD̄ (·), and GD̄ (·) in (9) from
{(
xD̄i , y

D̄
i

)}nD̄

i=1
as explained in

Appendix A. Let µ̂D̄ (·), σ̂D̄ (·), and ĜD̄ (·) be these estimates.

Step 2. Estimate the null ROC-GAM regression model (10) from
{(
xDj , y

D
j

)}nD

j=1
as

explained in Appendix A, and obtain the bootstrap pilot estimates R̂OC
0

xD
j

(p),

1 ≤ j ≤ nD.
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For b = 1, . . . , B

Step 3. Generate bootstrap resamples
{(
xD̄i , y

D̄∗
i,b

)}nD̄

i=1
and

{(
xDj , y

D∗
j,b

)}nD

j=1
as follows

yD̄∗i,b = µ̂D̄

(
xD̄i

)
+ σ̂D̄

(
xD̄i

)
εD̄∗i,b , (11)

yD∗j,b = µ̂D̄
(
xDj
)

+ σ̂D̄
(
xDj
)
Ĝ−1
D̄

((
R̂OC

0

xD
j

)−1 (
u∗j,b
))

, (12)

where
{
εD̄∗i,b

}nD̄

i=1
is a sample of i.i.d. observations from distribution ĜD̄, and

{
u∗j,b

}nD

j=1

is a sample of i.i.d. observations from a uniform distribution on the interval [0, 1].

Step 4. From
{(
xD̄i , y

D̄∗
i,b

)}nD̄

i=1
and

{(
xDj , y

D∗
j,b

)}nD

j=1
obtain T b (T b|| or T b2 ).

In Section 4.3 we prove that the resamples obtained as explained in Step 3 above verify
the null hypothesis. Accordingly, the previous procedure approximates the distribution of
the test statistic T (T|| or T2) under H0. Thus, the test rule based on T (T|| or T2) consists

of rejecting the null hypothesis if T o > TBα , where TBα is the empirical (1-α)-percentile of
the values of T 1, . . . , TB obtained in Step 4.

4.2 Testing for factor-by-curve interaction

The test for the null hypothesis

H0 : ROCx (p) = g

(
β0 +

M∑
l=1

βlI (xu = l) + f (xv) + h0 (p)

)
, (13)

versus the general hypothesis

H1 : ROCx (p) = g

(
β0 +

M∑
l=1

βlI (xu = l) + f (xv) +

M∑
l=1

f l (xv) I (xu = l) + h0 (p)

)
,

is based on the estimates of the interaction curves f l (l = 1, . . . ,M). As before, L1 and L2

norms are considered, yielding the test statistics

S|| =

nD∑
j=1

M∑
l=1

∣∣∣f̂ l (xDjv) I (xDju = l
)∣∣∣ and S2 =

nD∑
j=1

M∑
l=1

(
f̂ l
(
xDjv
)
I
(
xDju = l

))2
.

The proposed statistics are measures of deviations from the estimated nonparametric in-

teraction curves f̂ l (l = 1, . . . ,M) to their means n−1
D

∑nD
j=1 f̂

l
(
xDjv

)
I
(
xDju = l

)
. We note

that, as before, the means are forced to be zero during estimation.
The bootstrap-based testing procedure in this case is the same as that presented above

to test for the effect of continuous covariates on the ROC curve. The only difference is
Step 2 of the algorithm, which now must be

12



Step 2. Estimate the null ROC-GAM regression model (13) from
{(
xDj , y

D
j

)}nD

j=1
, and

obtain the bootstrap pilot estimates R̂OC
0

xD
j

(p), 1 ≤ j ≤ nD.

4.3 Resampling under the null hypothesis

As previously discussed, a crucial point when applying the procedures presented above is
to obtain bootstrap resamples verifying the null hypothesis. In this section we show that
the resampling mechanism explained in Section 4.1 meets this requirement.

First, let us re-express the conditional ROC curve given in (1) as follows:

ROCx(p) = SD

(
S−1
D̄

(p | x) | x
)

= P
(
YD ≥ S−1

D̄
(p | x) |X = x

)
= P (SD̄ (YD | x) ≤ p |X = x) .

Thus, the conditional ROC curve may be seen as the conditional cumulative distribution
function of the random variable SD̄ (YD | x). This equivalence, in conjunction with the
location-scale regression model assumed for YD̄ (see (9)), implies that

Y ∗D = µD̄ (X) + σD̄ (X)G−1
D̄

(
ROC−1

X (U)
)
, (14)

with U ∼ U [0, 1], is a random variable with conditional cumulative survival function

S∗D (c | x) = P (Y ∗D ≥ c |X = x)

= P

(
ROC−1

x (U) ≤ GD
(
c− µD̄ (x)

σD̄ (x)

)∣∣∣∣X = x

)
= P

(
ROC−1

x (U) ≤ SD (c | x) |X = x
)

= SD

(
S−1
D̄

(SD̄ (c | x) | x) | x
)

= SD (c | x) .

Therefore, given X = x, the conditional ROC curve related to YD̄ and Y ∗D is the same as
the one associated with YD̄ and YD, i.e., ROCx (·). Note that in the previous result it is
assumed that SD̄ (· | x) is a monotonically strictly decreasing function (which also implies
that the conditional ROC curve is continuous).

Finally, it is worth emphasising that the (conditional) ROC curve provides a description
of the separation between the (conditional) distributions of the diagnostic test in healthy
and diseased populations, regardless of the specific location of both distributions. This
property of the ROC curve, jointly with result (14), thus suggests the resampling plan
discussed in Section 4.1:

13



• The healthy population is kept fixed, and a bootstrap of residuals is used to obtain
the sample in the healthy population (see eqn. (11)).

• Result (14) is used to obtain the bootstrap sample in the diseased population, where
the theoretical quantities are replaced by their respective estimates (see eqn. (12)).
In order to “mimic” the null hypothesis when resampling, the conditional ROC curve
under the null hypothesis (see models (10) and (13)) is substituted for ROCx (·) in
(14).

5 Simulation study

In this section we report on a simulation study designed to assess the validity of the
bootstrap-based tests described in Section 4 above. Extra simulation results can be found
in the Supplementary Material available online.

Data are simulated from four different scenarios, namely,

• Scenario I

YD̄ = sin (πXv1)− a0.3X3
v1 +

√
0.2 + 0.5 exp (Xv1)εD̄,

YD = sin (πXv1) +
√

0.2 + 0.5 exp (Xv1) +
√

0.2 + 0.5 exp (Xv1)εD.

• Scenario II

YD̄ = −2X2
v1 + 0.5 exp(Xv2) + 0.5εD̄,

YD = aX2
v1 − 2X2

v1 + 0.5 sin(π(Xv2 + 1)) + 0.5 exp(Xv2) + 0.5εD.

• Scenario III

YD̄ = −0.25X3
v1 + 0.5X2

v1 + 0.5X2
v1Xu1 − 0.5X2

v1(1−Xu1) + 0.5εD̄,

YD = 0.25X3
v1 + (a+ 1)

(
0.5X2

v1 + 0.5X2
v1Xu1 − 0.5X2

v1(1−Xu1)
)

+ 0.5εD.

• Scenario IV

YD̄ = sin(2Xv1) + (1− a)

(
1

1 + exp(−10Xv1)
(1−Xu1)− 1

1 + exp(−10Xv1)
Xu1

)
+ εD̄,

YD = Xu1 + sin(Xv1) +
1

1 + exp(−10Xv1)
(1−Xu1)− 1

1 + exp(−10Xv1)
Xu1 + εD.

In all cases, a is a real constant, Xv1 is simulated from a uniform distribution on [−1, 1] and
εD̄ and εD ∼ N (0, 1). In Scenario II, Xv2 is a continuous covariate which is simulated from
a uniform distribution on [−1, 1], and Scenario III and IV represent the factor-by-curve
case. Here Xu1 ∼ Bernoulli (0.5).

With the above configurations, the corresponding conditional ROC curves are respec-
tively
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• Scenario I

ROCx(p) = Φ

(
1 +

a0.3x3
v1√

0.2 + 0.5 exp (xv1)
+ Φ−1 (p)

)
,

• Scenario II

ROCx(p) = Φ
(
2ax2

v1 + sin(π(xv2 + 1)) + Φ−1(p)
)
,

• Scenario III

ROCx(p) = Φ
(
x3
v1 + a

(
x2
v1 + x2

v1xu1 − x2
v1(1− xu1)

)
+ Φ−1 (p)

)
,

• Scenario IV

ROCx(p) = Φ

(
xu1 + a

(
1

1 + exp(−10xv1)
(1− xu1)− 1

1 + exp(−10xv1)
xu1

)
+ Φ−1 (p)

)
,

where Φ denotes the cumulative distribution function of a standard normal random vari-
able. We note that Scenario I was also considered in Rodŕıguez-Álvarez et al. (2011b) and
that Scenario IV was designed to mimic the CAD data discussed in Section 7 below.

In order to fit a ROC-GAM regression model, several choices need to be made. In all
results shown below, the probit function, namely g−1 = Φ−1, is taken as the link function.
With respect to the set of FPFs – needed in Step 1 of the algorithm presented in Appendix
A – nP = 50 and equally-spaced values are considered. Our implementation makes use
of binning type acceleration techniques (Fan and Marron, 1994) to reduce computational
time. In this study, we use 30 equally-spaced binning points along the range of each of the
continuous covariates. The bandwidths involved in the local-linear kernel smoothers are
selected using the standard procedure of leave-one-out cross validation, and recomputed
for each bootstrap resample.

To study the size and power of the tests, different values are considered for a. Note that
a controls the deviation from the null hypothesis. In Scenarios I and II, a = 0 corresponds
to the hypothesis of no effect of covariate Xv1 on the ROC curve, and the more the constant
a shifts towards zero, the greater the effect of the covariate on the ROC curve. For Scenarios
III and IV, the value a = 0 corresponds to the hypothesis of no interaction between Xv1

and Xu1, and as the value of a rises, so does the degree of interaction. These behaviours
are illustrated in Figure 1. Note that the y-scale is different in the four plots. Thus, for a
specific value of a (excluding a = 0), the largest deviation from the null hypothesis would
be for Scenario II, and the lowest for Scenarios I and IV.

The bootstrap procedure described in Section 4.1 is applied to Scenarios I and II, and
the one presented in Section 4.2 to Scenarios III and IV. In all cases, critical values and
p-values are determined using B = 400 bootstrap samples. Type I errors and powers are
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Figure 1: For Scenarios I and II: centred nonparametric function of Xv1. For Scenarios III
and IV: centred interaction curve of Xv1 for Xu1 = 1. In all cases, the partial functions
are shown for different values of a. The dotted grey line represents the null hypothesis (no
effect/interaction), which also corresponds to a = 0.

calculated as the proportion of rejections of H0 in 1000 runs. Bearing in mind the sample
sizes, the following situations are considered: (1) the same sample size for both healthy
and diseased subjects, with nD = nD̄ = 50, 100, 200, 500, 1000; and (2) very unbalanced
sample sizes – consistent with the CAD data – with nD = 32 and nD̄ = 200, nD = 64 and
nD̄ = 400, nD = 128 and nD̄ = 800, and nD = 256 and nD̄ = 1600. For the sake of brevity,
only the results for nD = nD̄ = 50 and 1000, nD = 32 and nD̄ = 200, and nD = 256
and nD̄ = 1600 are shown below. Results for the remaining sample sizes are consistent
with those presented here. Since p-values should be uniformly distributed under the null
hypothesis, the Kolmogorov-Smirnov (KS) test for uniformity of the resulting p-values is
also performed.

Table 1 shows the type I errors registered by the proposed tests for different significance
levels and sample sizes. The p-values of the KS-test are also shown in this table. Figure
2 depicts quantile-quantile plots of the expected p-values (under the uniform distribution)
and the observed p-values for all Scenarios and tests considered in this paper. As can be
seen, the tests perform well in general, with type I errors proving to be relatively close to
nominal errors (Table 1), and p-value distributions close to the uniform one (Figure 2).
We note that there are some situations where the KS test rejects the null hypothesis of a
uniform distribution, but mainly at low sample sizes. We are especially concerned about
the result for Scenario III with such a large sample size, nD = nD̄ = 1000. Accordingly,
we evaluate the behaviour of the tests (under the same conditions) for a sample size of
nD = nD̄ = 2000. In this case (results not shown), the KS test gives p-values of 0.223 and
0.471 for S|| and S2 tests, respectively.

Power as a function of constant a, at different significance levels, is shown in Tables
2 - 5, and Figure 3 shows the power curves at 0.05 significance level. Both tests register
satisfactory power curves, with the probability of rejection rising in response to any increase
in the value of the constant a and/or the sample size. In general, both tests have very
similar power. However, especially for Scenario IV, the test based on the L1 norm seems
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to be more powerful. Finally, note that the power curves depict the expected behaviour
according to the plots shown in Figure 1.

Additional simulation studies are provided as online Supplementary material. Shown
there are the results when assuming (a) different distributions for εD̄ and εD (Student’s
t distributions and mixture of Gaussian distributions); and (b) that covariates only affect
the result of the diagnostic test in the diseased population. The results are consistent with
those discussed here. In brief, the tests produce type I errors close to nominal levels. As
expected, the probability of rejection rises as the sample size increases. In addition, the
results also highlight that the L1-norm test is slightly more powerful.

6 Software implementation: the npROCRegression package

This section contains a brief description of the R-package we developed to accompany
this paper. The package can be freely downloaded from https://cran.r-project.org/
package=npROCRegression, where a more detailed explanation of its use can be found.
To facilitate the use of the package by the biomedical community, npROCRegression has
been designed in a similar fashion to other regression functions/packages in R. The main
functions of the package are DNPROCreg() and INPROCReg, which estimate the conditional
ROC curve based on, respectively, the nonparametric direct (Rodŕıguez-Álvarez et al.,
2011a) and induced (Rodŕıguez-Álvarez et al., 2011b) regression approaches. Numerical
and graphical summaries of the fitted models can be obtained by calling the functions
print(), summary() and plot().

6.1 DNPROCreg() function

The function DNPROCreg() estimates the conditional ROC curve in the presence of multi-
dimensional covariates by means of the ROC-GAM regression approach presented earlier.
Usage is as follows:

DNPROCreg(marker, formula.h = ∼ 1, formula.ROC = ∼ 1,
group, tag.healthy, data,
ci.fit = FALSE
test.partial = NULL,
newdata = NULL,
control = controlDNPROCreg(),
weights = NULL)

The diagnostic test variable is indicated by the argument marker. The nonparamet-
ric location-scale regression model for the healthy population (see (9)) is specified by
formula.h. This argument should be a vector (of length 2) of right-hand formulas (atomic
values are also valid, because they are recycled). The first right-hand formula is the model
for the regression function, µD̄ (x), and the second one is the model for the (logarithm)
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Table 1: For Scenarios I, II, III and IV: estimated type I error registered by the proposed tests
under the null hypothesis, for different significance levels and sample sizes. The last column
presents the p-values of the Kolmogorov-Smirnov test for uniformity of the observed p-values.

Sample size Level
nD nD̄ Test 0.01 0.05 0.10 0.15 0.20 KS p-value

Scenario I

32 200
T|| 0.007 0.039 0.102 0.159 0.204 0.901
T2 0.009 0.045 0.092 0.146 0.196 0.948

50 50
T|| 0.011 0.070 0.126 0.173 0.220 0.020
T2 0.013 0.077 0.127 0.174 0.210 0.004

256 1600
T|| 0.011 0.053 0.113 0.165 0.210 0.695
T2 0.011 0.047 0.112 0.162 0.211 0.663

1000 1000
T|| 0.020 0.058 0.110 0.171 0.217 0.746
T2 0.016 0.056 0.108 0.161 0.217 0.744

Scenario II

32 200
T|| 0.008 0.031 0.067 0.108 0.157 0.009
T2 0.007 0.033 0.074 0.121 0.165 0.042

50 50
T|| 0.015 0.052 0.107 0.145 0.184 0.582
T2 0.016 0.060 0.112 0.145 0.192 0.709

256 1600
T|| 0.012 0.060 0.111 0.163 0.212 0.611
T2 0.015 0.063 0.119 0.164 0.219 0.732

1000 1000
T|| 0.019 0.053 0.109 0.152 0.205 0.558
T2 0.019 0.055 0.111 0.168 0.203 0.657

Scenario III

32 200
S|| 0.008 0.054 0.102 0.150 0.190 0.805
S2 0.008 0.051 0.095 0.149 0.203 0.892

50 50
S|| 0.015 0.053 0.097 0.143 0.191 0.412
S2 0.011 0.053 0.091 0.152 0.193 0.359

256 1600
S|| 0.009 0.056 0.120 0.162 0.205 0.358
S2 0.011 0.047 0.104 0.163 0.197 0.221

1000 1000
S|| 0.017 0.044 0.091 0.136 0.177 0.001
S2 0.013 0.053 0.089 0.134 0.188 0.003

Scenario IV

32 200
S|| 0.013 0.055 0.110 0.153 0.211 0.080
S2 0.012 0.056 0.118 0.161 0.213 0.075

50 50
S|| 0.013 0.045 0.093 0.141 0.187 0.006
S2 0.014 0.043 0.095 0.134 0.185 0.001

256 1600
S|| 0.018 0.056 0.109 0.156 0.218 0.533
S2 0.017 0.053 0.104 0.157 0.221 0.691

1000 1000
S|| 0.027 0.071 0.121 0.159 0.227 0.412
S2 0.023 0.062 0.120 0.174 0.217 0.481
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(a) Scenario I
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(b) Scenario II
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(c) Scenario III
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(d) Scenario IV

Figure 2: For Scenarios I, II, III and IV: Quantile-quantile plot for the observed p-values
vs. the expected p-values when the null hypothesis is correct.
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Table 2: For Scenario I: estimated rejection probabilities registered by the proposed tests under
the alternative hypothesis, for different values of a, significance levels and sample sizes.

Sample size Level
nD nD̄ Test 0.01 0.05 0.10 0.15 0.20

Scenario I

a = 0.5

32 200
T|| 0.011 0.055 0.107 0.164 0.221
T2 0.010 0.057 0.101 0.156 0.206

50 50
T|| 0.023 0.068 0.133 0.184 0.227
T2 0.021 0.076 0.131 0.180 0.223

256 1600
T|| 0.046 0.120 0.200 0.268 0.330
T2 0.039 0.112 0.192 0.258 0.329

1000 1000
T|| 0.097 0.222 0.318 0.392 0.475
T2 0.091 0.210 0.304 0.396 0.467

a = 1.0

32 200
T|| 0.015 0.061 0.124 0.188 0.236
T2 0.015 0.063 0.122 0.181 0.237

50 50
T|| 0.027 0.091 0.151 0.208 0.269
T2 0.034 0.092 0.158 0.209 0.265

256 1600
T|| 0.133 0.309 0.417 0.500 0.557
T2 0.142 0.316 0.422 0.488 0.551

1000 1000
T|| 0.417 0.652 0.764 0.832 0.874
T2 0.468 0.673 0.779 0.834 0.875

a = 2.0

32 200
T|| 0.048 0.115 0.201 0.288 0.349
T2 0.048 0.112 0.212 0.287 0.338

50 50
T|| 0.060 0.159 0.241 0.311 0.382
T2 0.074 0.161 0.247 0.318 0.381

256 1600
T|| 0.681 0.846 0.911 0.937 0.958
T2 0.712 0.859 0.917 0.945 0.967

1000 1000
T|| 0.990 0.999 1.000 1.000 1.000
T2 0.997 0.999 1.000 1.000 1.000
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Table 3: For Scenario II: estimated rejection probabilities registered by the proposed tests under
the alternative hypothesis, for different values of a, significance levels and sample sizes.

Sample size Level
nD nD̄ Test 0.01 0.05 0.10 0.15 0.20

Scenario II

a = 0.5

32 200
T|| 0.031 0.096 0.165 0.211 0.271
T2 0.024 0.087 0.160 0.216 0.268

50 50
T|| 0.037 0.097 0.176 0.226 0.268
T2 0.032 0.097 0.164 0.225 0.280

256 1600
T|| 0.648 0.818 0.889 0.912 0.935
T2 0.600 0.794 0.872 0.901 0.926

1000 1000
T|| 0.993 0.996 0.998 0.998 0.999
T2 0.990 0.996 0.998 0.998 0.999

a = 1.0

32 200
T|| 0.155 0.325 0.421 0.519 0.593
T2 0.137 0.299 0.414 0.505 0.575

50 50
T|| 0.142 0.305 0.398 0.473 0.540
T2 0.126 0.293 0.390 0.456 0.512

256 1600
T|| 1.000 1.000 1.000 1.000 1.000
T2 1.000 1.000 1.000 1.000 1.000

1000 1000
T|| 1.000 1.000 1.000 1.000 1.000
T2 1.000 1.000 1.000 1.000 1.000

a = 2.0

32 200
T|| 0.608 0.833 0.896 0.931 0.953
T2 0.572 0.809 0.886 0.921 0.950

50 50
T|| 0.574 0.783 0.867 0.920 0.942
T2 0.534 0.751 0.841 0.904 0.933

256 1600
T|| 1.000 1.000 1.000 1.000 1.000
T2 1.000 1.000 1.000 1.000 1.000

1000 1000
T|| 1.000 1.000 1.000 1.000 1.000
T2 1.000 1.000 1.000 1.000 1.000
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Table 4: For Scenario III: estimated rejection probabilities registered by the proposed tests
under the alternative hypothesis, for different values of a, significance levels and sample sizes.

Sample size Level
nD nD̄ Test 0.01 0.05 0.10 0.15 0.20

Scenario III

a = 0.5

32 200
S|| 0.016 0.060 0.123 0.174 0.239
S2 0.015 0.065 0.122 0.181 0.237

50 50
S|| 0.020 0.081 0.146 0.207 0.257
S2 0.020 0.083 0.143 0.203 0.257

256 1600
S|| 0.172 0.321 0.429 0.509 0.579
S2 0.160 0.310 0.423 0.501 0.587

1000 1000
S|| 0.567 0.769 0.853 0.902 0.929
S2 0.527 0.753 0.848 0.890 0.917

a = 1.0

32 200
S|| 0.024 0.092 0.177 0.262 0.332
S2 0.027 0.086 0.175 0.253 0.319

50 50
S|| 0.052 0.130 0.210 0.284 0.358
S2 0.050 0.127 0.208 0.276 0.347

256 1600
S|| 0.734 0.875 0.926 0.950 0.966
S2 0.690 0.853 0.918 0.942 0.963

1000 1000
S|| 0.998 1.000 1.000 1.000 1.000
S2 0.998 0.999 1.000 1.000 1.000

a = 2.0

32 200
S|| 0.073 0.197 0.308 0.417 0.487
S2 0.056 0.185 0.297 0.383 0.471

50 50
S|| 0.111 0.270 0.372 0.464 0.527
S2 0.095 0.235 0.361 0.438 0.518

256 1600
S|| 1.000 1.000 1.000 1.000 1.000
S2 1.000 1.000 1.000 1.000 1.000

1000 1000
S|| 1.000 1.000 1.000 1.000 1.000
S2 1.000 1.000 1.000 1.000 1.000
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Table 5: For Scenario IV: estimated rejection probabilities registered by the proposed tests
under the alternative hypothesis, for different values of a, significance levels and sample sizes.

Sample size Level
nD nD̄ Test 0.01 0.05 0.10 0.15 0.20

Scenario IV

a = 0.3

32 200
S|| 0.016 0.066 0.131 0.189 0.246
S2 0.016 0.062 0.130 0.180 0.240

50 50
S|| 0.011 0.068 0.122 0.175 0.218
S2 0.013 0.063 0.117 0.171 0.222

256 1600
S|| 0.164 0.351 0.476 0.571 0.641
S2 0.121 0.299 0.420 0.521 0.599

1000 1000
S|| 0.569 0.786 0.866 0.906 0.921
S2 0.477 0.694 0.815 0.862 0.903

a = 0.5

32 200
S|| 0.021 0.085 0.155 0.219 0.290
S2 0.023 0.096 0.171 0.236 0.297

50 50
S|| 0.027 0.087 0.149 0.211 0.268
S2 0.020 0.068 0.134 0.199 0.271

256 1600
S|| 0.563 0.787 0.856 0.900 0.922
S2 0.469 0.705 0.817 0.872 0.911

1000 1000
S|| 0.982 0.995 0.998 0.998 0.999
S2 0.959 0.989 0.994 0.998 0.998

a = 0.7

32 200
S|| 0.046 0.130 0.227 0.299 0.365
S2 0.039 0.115 0.196 0.277 0.339

50 50
S|| 0.039 0.130 0.204 0.276 0.340
S2 0.032 0.116 0.187 0.248 0.315

256 1600
S|| 0.908 0.973 0.983 0.989 0.993
S2 0.855 0.949 0.978 0.984 0.992

1000 1000
S|| 1.000 1.000 1.000 1.000 1.000
S2 1.000 1.000 1.000 1.000 1.000
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Figure 3: For Scenarios I, II, III and IV: estimated rejection probabilities registered by the
proposed tests, as a function of the parameter a, for different sample sizes and at a 0.05
significance level (red line).
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of the variance function, σ2
D̄

(x). These formulas are similar to that used for the glm()
function, except that nonparametric functions can be added to the additive predictor by
means of function s(). For instance, specification ∼ x1 + s(x2) would assume a linear
effect of x1 and a nonparametric effect of x2. Categorical variables (factors) can be also
incorporated, as well as factor-by-curve interaction terms as was discussed in Section 3. For
example, to include the interaction between age and gender we need to specify ∼ gender +
s(age) + s(age, by = gender). Note that, for identifiability purposes, the “main” effects
of the continuous and categorical covariates need to be included in the formula. These
considerations also apply to the argument formula.ROC, where the ROC-GAM regression
model (see (7) and (8)) is specified.

The name of the variable that distinguishes healthy from diseased individuals is rep-
resented by argument group, and the value codifying the healthy individuals in group is
specified by tag.healthy. The data argument is a data frame containing the data and all
needed variables.

Pointwise bootstrap confidence intervals for each component of the additive predictor
of the ROC-GAM, as well as for the conditional AUCs (with the integral approximated by
numerical integration methods), are obtained by setting the argument ci.fit to TRUE.

The components of the ROC-GAM to be tested for their possible effect are indicated
in test.partial. In this argument, we pass the position of the components as specified in
the formula.ROC argument.

An optional data frame containing the covariate values at which predictions are required
can be specified in argument newdata. If missing, an adequate set of points from the dataset
used in the fit is selected. To that end, the function DNPROCregdata() is used.

Argument control allows us to modify some default parameters that control the fitting
process. For instance, the cardinality of the set of FPF used in the estimation process (see
Appendix A, Step 1) can be specified using this argument (by default nP = 50), as can the
link function, the number of bootstrap resamples, and the significance level used for the
construction of the confidence intervals.

6.2 INPROCreg() function

The function INPROCreg() estimates the conditional ROC curve in the presence of a one-
dimensional continuous covariate, using the induced nonparametric ROC regression ap-
proach as presented in Rodŕıguez-Álvarez et al. (2011b). The call to the function is as
follows:

INPROCreg (marker, covariate,
group, tag.healthy, data,
ci.fit = FALSE, test = FALSE,
accuracy = NULL, accuracy.cal = c("ROC","AROC"),
newdata = NULL, control = controlINPROCreg(),
weights = NULL)
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Through marker and covariate arguments, users indicate the diagnostic test variable and
the continuous covariate of interest, respectively.

In group and tag.healthy arguments, we indicate respectively the name of the vari-
able that distinguishes healthy from diseased individuals, and the value codifying healthy
individuals in that variable. The data argument is a data frame containing the data and
all needed variables.

Bootstrap confidence intervals for the regression and variance functions, as well as for
several accuracy measures, are obtained by setting the argument ci.fit to TRUE. Argument
test should be set to TRUE in order to evaluate the effect of the continuous covariate on
the ROC curve via the test presented in Rodŕıguez-Álvarez et al. (2011b).

By default, the INPROCreg() function returns the estimated regression and variance
functions both in healthy and diseased populations. As far as accuracy measures are
concerned, the function provides the estimated conditional ROC curve, the associated
conditional AUCs (with the integral approximated by numerical integration methods), and
the covariate-adjusted ROC curve, AROC (see (6)). In addition, it is also possible to obtain
the conditional Youden index (“YI”), the covariate-specific values for which the TPF and
the TNF coincide (“EQ”), and/or the covariate-specific optimal thresholds (“TH”) based
on the previous two criteria (argument accuracy). Both the YI and the EQ values (and
thus the optimal thresholds) can be calculated based on the conditional ROC curve or the
AROC curve (argument accuracy.cal) (see, e.g., eqn (5)). We recommend the use of the
AROC curve in those situations where the accuracy of the test does not vary along with
the covariate. Note that, even in this case, covariate-specific thresholds could be obtained
(Rodŕıguez-Álvarez et al., 2011b).

An optional data frame containing the values of the covariate at which predictions
are required can be specified in argument newdata. If this dataset is not specified, an
adequate set of points from the data used in the fit is selected. A finer control of the fitting
process can be achieved by the argument control. This argument can be used to select
the number of binning points, for instance, or the order of the polynomial associated to
the kernel smoothers.

7 Application to a CAD system

Computer-aided diagnosis (CAD) has been defined as the diagnosis made by a radiologist
who takes into account the results of quantitative computer analysis of a medical diagnosis
(Doi, 2007). These kind of systems have demonstrated their usefulness in situations where
the radiologists have to discriminate positive cases among hundreds or thousands of normal
cases. Screening programs present a challenge for physicians, and the presence of a second
reader in the form of a computer algorithm has been demonstrated to be useful (Nishikawa,
2007). The foundation of a CAD system is a computer vision algorithm which extracts
some features from an image. The parameters that represent these features are fed to a
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classifier which is specifically trained to discriminate between normal and abnormal cases.
CAD schemes have been developed for screening programs related to the detection of

cancer in the breast, chest, colon, etc. The main issue for breast cancer detection is the
identification of masses and microcalcifications (Sickles, 1984). This paper focuses on a
CAD scheme specially designed for breast mass detection (see Varela et al., 2007, for a
detailed description). The system is designed to extract several image features, such as
maximum and minimum, average, size, eccentricity, contrast, coarseness, etc. for each
suspicious region. Among these features, those related to the iris filter have a special
importance in terms of the performance of the whole system. The iris filter is an algorithm
specially designed for highlighting rounded and brilliant structures within an image. Since
masses have such an appearance on a mammogram, features related to this property are
of special interest in the development of CAD systems.

Another important consideration in developing a CAD scheme is the impact that a
particular feature has on the performance of the whole system. For breast cancer, the
main problem for mass detection is the presence of several structures related to glandular
tissue, which have an attenuation coefficient similar to that of masses. In some cases
(dense breast), the presence of such structures is abundant, therefore hiding the presence
of masses. By contrast, when the presence of glandular tissue is negligible (fatty breast),
mass detection becomes relatively easy. In addition, the volume of the breast and its
composition differ from breast to breast. Thus, the contrast and even the average grey
level of the pixels of the final image could be quite different, despite the use of automatic
exposure control systems for image acquisition. The consequence is that for humans and
machines, the task of detection of possible cancerous masses becomes more difficult.

7.1 Data set

The database contains 580 mammograms, with a total of 190 images classified as abnormal
(lesion present), and the remaining 390 as normal (no lesion present). From the 580 original
mammograms, the computer detected (in a first step) a total of 2796 regions suspicious of
being a malignant mass. Of these, 384 corresponded to true masses, and the remainder,
a total of 2412, corresponded to false detections. Table 6 shows summary statistics of the
iris filter for fatty and dense tissue types, as well as for several average grey level strata.

7.2 Data analysis

The main purpose of this study on CAD systems is to statistically assess the possible effect
of the average grey level (AGL) of the pixels forming the suspicious region and the breast
tissue type (TIS) on the accuracy of the iris filter (IRIS) when discriminating between real
malignant masses (D) and false detections (D̄). To evaluate such effects, Rodŕıguez-Álvarez
et al. (2011a) suggested the use of (semi) parametric ROC regression techniques combined
with B-splines, to model the nonlinear effect of AGL on the iris filter, which in turn may
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Table 6: Median (interquartile range) of the iris filter for the global sample, for dense and
fatty tissues, and for four average grey level strata, based on quartiles.

True masses False detections
Global sample 0.666 (0.654, 0.676) 0.654 (0.643, 0.667)
Tissue type
Dense 0.668 (0.654, 0.679) 0.664 (0.674, 0.652)
Fatty 0.664 (0.653, 0.674) 0.639 (0.647, 0.658)
Average grey level
≤ 0.764 0.659 (0.654, 0.672) 0.649 (0.641, 0.659)
(0.764, 0.804] 0.672 (0.662, 0.679) 0.651 (0.642, 0.665)
(0.804, 0.840] 0.670 (0.656, 0.680) 0.660 (0.649, 0.671)
> 0.840 0.662 (0.649, 0.673) 0.658 (0.640, 0.670)

vary among tissue types. In this section we re-analyse the CAD data, now using the
fully nonparametric ROC-GAM regression approach described in Section 3. This approach
allows for the nonparametric specification of the effect of AGL on the ROC curve. Also,
the bootstrap-based tests we suggest in Section 4 are used to formally check the possible
effect of the covariate AGL and the tissue-by-AGL interaction on the ROC curve.

Before proceeding with the discussion of the results, we should note that all analyses
are done with the suspicious region as the unit of analysis. We are aware that the possible
correlation induced by the fact a mammogram may contain more that one suspicious region
should be taken into account. A limitation of the methodology presented in this paper is
that it does not allow to deal with correlated data. As a consequence, the analyses and
results discussed here are only presented for the sake of illustrating the proposed methods
and the usage of the R-package. Conclusions should, therefore, be analysed with caution.

As a first step of the analysis, the discriminatory capacity of the iris filter is evaluated
without taking into account the effect of the covariates. The AUC (95% confidence in-
terval) corresponding to the pooled ROC curve is 0.69 (0.67, 0.72). ROC analysis is also
performed for dense and fatty tissues separately, yielding pooled AUCs of 0.64 (0.59, 0.68)
and 0.75 (0.72, 0.79), respectively. Additionally, we estimate the AGL-adjusted ROC curves
(AROC), both for dense and fatty tissues. The areas under these AROC curves are, in
this case 0.60 (0.55, 0.64) and 0.73 (0.69, 0.78). Note that they are slightly lower than
the pooled AUCs, possibly indicating that the pooled analysis ‘incorporates’ the portion
of discrimination attributable to AGL (Pardo-Fernández et al., 2014). In any case, these
results suggest that the discriminatory capacity of the iris filter is larger for fatty tissue
than for dense tissue (see also Table 6).

In order to explore the possible effect of the continuous covariate AGL on the iris filter
(and thus on its accuracy), we first consider the induced ROC regression methodology
discussed in Section 2.1.1. Specifically, we assume the following nonparametric location-
scale regression models for false detection and true masses (separate analyses are conducted
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on dense and fatty tissues)

IRISD̄= µD̄(AGL) + σD̄(AGL)εD̄,
IRISD= µD(AGL) + σD(AGL)εD,

(15)

Figure 4 depicts the estimated effect of AGL both on the mean and standard deviation
of the filter output, according to breast tissue type, along with 95% pointwise confidence
intervals. For masses, in both fatty and dense tissues, mean values rise to a peak approx-
imately midway through the interval and fall thereafter. As a feature that measures the
gradual variation in the region’s grey level value, filter output tends to rise to a maximum
in these intermediate areas, since it is here that such variation could register its most ex-
treme values. For false detections, the pattern is more homogeneous, owing to the fact
that, ideally, grey level values display no gradual variation and are instead homogeneously
distributed.

The results shown in Figure 4 provide very useful information. First, they suggest
the presence of nonlinear effects of AGL on IRIS, which we may expect to be reflected
in the diagnostic accuracy. Second, discrimination based on the iris output is much more
complex in dense tissue than in fatty tissue. For dense tissue, mean iris filter values are
quite similar both for true masses and false detections, and this behaviour is shared by all
AGL values. Finally, these results seem to indicate the existence of a possible interaction
between average grey levels and tissue type. Accordingly, we fitted the following ROC-
GAM regression model including such an interaction

ROCAGL,TIS(p) = Φ

(
β0 +

2∑
l=1

βlI (TIS = l) + f(AGL) +

2∑
l=1

f l(AGL)I (TIS = l) + h0 (p)

)
.

(16)
Here TIS is a binary variable taking a value of 1 in the case of dense tissue and 2 in the
case of fatty tissue.

Figure 5 shows the estimated partial functions f (global effect of AGL), f1 (deviation
for dense tissue) and f2 (deviation for fatty tissue), together with the corresponding 95%
pointwise bootstrap confidence intervals. In Figure 6 the estimated conditional AUCs based
on model (16) are shown. The estimated AUCs obtained using the induced approach are
quite similar to those depicted in Figure 6. However, they are not shown here, for purposes
of clarity. As can be seen in Figure 6, the iris filter achieves better results for fatty breasts,
as we might expect. Moreover, its performance drops as the AGL increases. This is
consistent with the fact that on average, pixel values for fatty breasts are relatively low.
When the average pixel value rises it is probably because the overall contrast of the whole
breast decreases, due to the size of the breast, the energy of the x-ray beam, or both. In
any case, the quality of the image gets worse, and the results achieved by the filter are
not as good. On the contrary, for dense breasts, results are almost similar along the entire
range of the pixel values. The presence of structures related to the glandular tissue, in
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(a) Dense tissue
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(b) Fatty tissue

Figure 4: Nonparametric estimates of IRIS by AGL in dense and fatty tissue populations,
along with 95% pointwise bootstrap confidence intervals. Solid line: true masses. Dashed
line: false detection. Left: nonparametric mean functions. Right: nonparametric variance
functions.
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Figure 5: Estimated main effect of AGL in IRIS’s accuracy, and deviation for dense and
fatty tissue, together with 95% pointwise bootstrap confidence intervals.
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Figure 6: Estimated conditional AUC for the CAD system, according to AGL and type of
tissue. The dashed lines represent the 95% pointwise bootstrap confidence intervals.

this case, makes the iris filter not work properly, and as a consequence the enhancement
of the mass with respect to other structures is not as pronounced, degrading the detection
capabilities of the whole system.

All these results suggest that the presence of an interaction between the type of tissue
and the average grey levels is plausible. The tests presented in Section 4.2 are to statistically
verify this hypothesis. The resulting p-values are 0.02 and 0.10 for S|| and S2 respectively.
Assuming a significance level of 0.05, the result based on S2 does not suggest the presence
of interaction. However, the p-value obtained with S|| is lower than 0.05, thus rendering
the interaction term significant.

Although both tests could lead to different conclusions, the results of the simulation
study seem to indicate that the tests based on the L1 norm are more powerful or at least
as good as the L2-based tests. In addition, based on all results presented we are also prone
to accept the presence of interaction. However, note that a significant interaction does not
say anything about the effect of AGV on the accuracy of IRIS: it solely indicates that this
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effect is different in dense and fatty tissues. Thus, the last step in our analyses is to check
for the effect of AGL on the accuracy of IRIS. To that aim, the following ROC-GAM model
is fitted separately in fatty and dense tissues

ROCAGL(p) = Φ (β0 + f(AGL) + h0(p)) ,

and the tests for continuous covariate effect outlined in Section 4.1 are performed. Whereas
the p-values obtained in the case of dense tissue are 0.60 (T||) and 0.41 (T2), in the case of
fatty tissue both are < 0.001. So we can conclude that the accuracy of IRIS is constant
along AGL in the dense tissue, while in the fatty tissue population the accuracy of IRIS
depends significantly on AGL.

7.3 Source code

The R-code used to fit the models presented in Section 7.2 is now given. For the nonpara-
metric induced approach presented in (15), the following code is used

library(npROCRegression)

# Set several parameters controlling the fitting process
# p: order of the local polynomial kernel smoother to be used
# for estimating the conditional mean functions.
# kbin: number of binning points to be used for the binning
# approximation.

control.ind = controlINPROCreg(p = 1, kbin = 50)

# Dense tissue
mod.dense <- INPROCreg(marker = "IRIS", covariate = "AGL",
group = "MASS", tag.healthy = 0,
data = subset(masses, TIS == "Dense"),
ci.fit = TRUE, test = TRUE, control = control.ind)

# Fatty tissue
mod.fatty <- marker = "IRIS", covariate = "AGL",
group = "MASS", tag.healthy = 0,
data = subset(masses, TIS == "Fatty"),
ci.fit = TRUE, test = TRUE, control = control.ind)

Regarding the ROC-GAM model including the AGL-by-tissue interaction, model (16), the
R-code is listed below

# card.P: cardinality of the set of FPF to be used for estimating
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# the ROC-GAM model.
# kbin: number of binning points to be used for the binning
# approximation.

control.d = controlDNPROCreg(card.P = 50, kbin = 50)

# Fit the model
mod.int <- DNPROCreg(marker = "IRIS",
formula.h = ∼ TIS + s(AGL) + s(AGL, by = TIS),
formula.ROC = ∼ TIS + s(AGL) + s(AGL, by = TIS),
group = "MASS", tag.healthy = 0,
data = masses, control = control.d,
ci.fit = TRUE, test.partial = 3)

Note that we include the interaction between AGL and TIS not only in the ROC-GAM
(formula.ROC), but also in the nonparametric location-scale regression model assumed for
the healthy population (see (9)), in both the conditional mean and the logarithm of the
conditional variance (formula.h). Also, by specifying test.partial = 3 we test for the
interaction between the AGL and TIS, which is modelled by means of the third component
of the ROC-GAM formula, i.e., s(AGL, by = TIS).

8 Discussion

This paper proposes and investigates L1- and L2-norm based test statistics to evaluate the
effect of continuous covariates and factor-by-curve interactions in a ROC-GAM regression
model. The practical implementation of the proposed tests relies on approximating their
distribution under the null hypotheses by means of bootstrap techniques. To that aim,
a resampling mechanism that obeys the null hypothesis is proposed. Simulation results
show that the proposed procedures yield type I errors relatively close to nominal errors,
regardless of sample size. As expected, the power grows as the sample size increases and
as one moves further away from the null hypothesis. In general, all tests present a similar
power. However, both the simulation study and the real data analysis also suggest that,
in some circumstances, the tests based on the L1 norm (i.e., T|| and S||) could be more
powerful. In practice, we recommend the use of both tests. If the conclusions derived from
them are not concordant, as for our CAD system, the L1 norm test can be considered more
reliable. However, we also suggest basing the conclusions not only on p-values (which serve
as guidance), but on a comprehensive analysis and understanding of the data.

Our calculations were done with the R-package npROCRegression that can be freely
downloaded from https://cran.r-project.org/package=npROCRegression. The R-code
used for the simulations can also be found at https://bitbucket.org/mxrodriguez/
rocgam inference. The package covers a variety of nonparametric regression approaches
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for the inclusion of covariate information on the ROC curve. However, it would be worth-
while to include some extensions of interest. For instance, we could extend the ROC-GAM
approach implementation to allow for the presence of two or more diagnostic tests, and
to provide inferential procedures for comparing the accuracy of these tests. Also, the in-
corporation of additional optimal threshold criteria may constitute another issue to cover
in the future (López-Ratón et al., 2014). Currently, estimates of the conditional AUC
and Youden Index (and associated threshold values) are obtained by simply plugging-in
an estimate for the conditional ROC curve in (3) and (5), respectively. Further work is
warranted to implement direct estimators, such as those presented in Yao et al. (2010) and
Xu et al. (2014).

The methods presented in this paper pave the way for further research efforts, discussed
here. Firstly, the parametrisation used for the factor-by-curve interaction model allows us
to evaluate the presence of an interaction component. If the result of the tests bring to reject
the absence of interaction, it would be of great interest to study in which groups defined
by the categorical covariate, the continuous covariate has an impact on the accuracy of the
diagnostic test. In the data analyses presented in this paper, this question is answered by
fitting a separate ROC-GAM model in fatty and dense tissue. We are currently working
on alternative parametrisations that would permit us to find out which groups present a
significant continuous covariate effect, without the need to fit separate models. Secondly,
this paper focuses on testing for effects modelled by means of univariate nonparametric
functions. The extension of both the estimation algorithm and the testing procedures to
bivariate nonparametric functions (curve-by-curve interactions) represents an interesting
line of research. Note that these extensions would allow incorporating (and testing) the
interaction between continuous covariates and the FPF. However, as pointed out before,
estimation in this case should ensure monotonicity in the FPF direction. Thirdly, in order
to apply the ROC-GAM approach in practice, it would be interesting to know which
covariates have a linear effect and which have a nonlinear effect. The graphical display
of the estimates of each partial effect, jointly with the corresponding pointwise confidence
intervals, can be used for that purpose. A nonlinear effect will be detected if it is not
possible to plot a line inside the limits given by the confidence intervals. Otherwise the
effect can be considered linear. However, since the confidence limits are only pointwise,
this approach should be taken with caution. We believe that the results presented in this
paper can be extended to propose bootstrap-based procedures for testing for nonlinearity
effects. Finally, the generalisation of the methods presented in this paper to correlated
data constitutes an area to be further explored.

Concerning the application of the results of this paper to the development of CAD
systems, the possibility of analysing and evaluating covariate effects can help in the de-
velopment of new algorithms for image feature extraction. The methods discussed allow
for a deeper analysis of side effects in the behaviour of the algorithm, and this opens the
possibility to propose alternative designs that would permit us to create more complex and
useful algorithms.
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A ROC-GAM estimation procedure

This appendix describes the estimation process associated with the ROC-GAM regression
models (7) and (8). We present here the main steps of the algorithm, and refer the reader
to Rodŕıguez-Álvarez et al. (2011a) for more details. More precisely, in Rodŕıguez-Álvarez
et al. Rodŕıguez-Álvarez et al. (2011a) the algorithm proposed by Alonzo and Pepe (2002)
for the estimation of ROC-GLMs was extended to allow for nonparametric covariate effects.
The steps of the proposed procedure can be summarised as follows

Step 1. Choose a set of FPFs P = {pl}nP
l=1 ⊂ (0, 1) where the conditional ROC curve will

be evaluated;

Step 2. Estimate SD̄ (· | x), say ŜD̄ (· | x), on the basis of the sample
{(
xD̄i , y

D̄
i

)}nD̄

i=1
;

Step 3. For each observation in the diseased population, calculate the estimated ‘place-

ment value’ (Hanley and Hajian-Tilaki, 1997) ŜD̄

(
yDj | xDj

)
, 1 ≤ j ≤ nD;

Step 4. For each pl ∈ P and each disease observation, calculate the binary placement

value indicator B̂jpl = I
(
ŜD̄

(
yDj | xDj

)
≤ pl

)
, 1 ≤ l ≤ nP , 1 ≤ j ≤ nD; and

Step 5. Fit the ROC-GAMs (7) or (8) to the data{({
xDj , pl

}
, B̂jpl

)
, l = 1, . . . , nP , j = 1, . . . , nD

}
and obtain the estimates

R̂OCx (p).

Note that in Step 5, the binary indicators, B̂jpl , are the response variable. This suggests
the use of GAM estimation techniques for binary response data. Rodŕıguez-Álvarez et al.
(2011a) proposed the use of the local scoring estimation algorithm with backfitting (Hastie
and Tibshirani, 1990), and estimates of fk, f

l and h0 are obtained by applying local
polynomial kernel smoothers (Fan and Gijbels, 1996). In the present paper, both for
the simulations and the real data analyses, we use local-linear smoothers jointly with
binning-type acceleration techniques to speed up computation (Fan and Marron, 1994).
The optimal bandwidths are selected by means of cross validation.

As far as model (9) is concerned (involved in Step 2), nonparametric estimates of µD̄ (·)
and σD̄ (·), say µ̂D̄ (·) and σ̂D̄ (·), are obtained by means of local-linear kernel smoothers and
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the backfitting algorithm, and the cumulative survival function of the regression error GD̄
is estimated by the corresponding empirical cumulative survival function of the estimated

residuals, i.e., ĜD̄ (c) = n−1
D̄

∑nD̄
i=1 I

(
ε̂D̄i ≥ c

)
, where ε̂D̄i =

(
yD̄i − µ̂D̄

(
xD̄i

))
/σ̂D̄

(
xD̄i

)
,

i = 1, . . . , nD̄ (see Rodŕıguez-Álvarez et al., 2011a, for more details).
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González-Manteiga, W., J. C. Pardo-Fernández, and I. van Keilegom (2011). ROC curves
in non-parametric location-scale regression models. Scand J Stat 38 (1), 169–184.

36



Hanley, J. A. and K. O. Hajian-Tilaki (1997). Sampling variability of non-parametric
estimates of the areas under receiver operating characteristic curves: An update. Acad
Radiol 4, 49–58.

Hastie, T. J. and R. J. Tibshirani (1990). Generalized Additive Models. Monographs on
Statistics and Applied Probability. Chapman & Hall/CRC.

Inácio de Carvalho, V., M. de Carvalho, T. A. Alonzo, and W. González-Manteiga (2016,
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ible direct ROC regression model: Application to the detection of cardiovascular risk
factors by anthropometric measures. Comput Stat Data An 55 (12), 3257–3270.
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