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ABSTRACT. We represent a general bilinear Calderón–Zygmund operator as a
sum of simple dyadic operators. The appearing dyadic operators also admit a
simple proof of a sparse bound. In particular, the representation implies a so
called sparse T1 theorem for bilinear singular integrals.

1. INTRODUCTION

In this paper we show the exact dyadic structure behind bilinear Calderón–
Zygmund operators by representing them using simple dyadic operators, name-
ly some cancellative bilinear shifts and bilinear paraproducts. In the linear case
Petermichl [14] first represented the Hilbert transform in this way, and later Hytö-
nen [4] proved a representation theorem for all linear Calderón–Zygmund oper-
ators.

The representation theorems were originally motivated by the sharp weighted
Ap theory, but certainly also have other value and intrinsic interest. For example,
a representation theorem holds also in the bi-parameter setting as shown by one
of us [10] (the multi-parameter extension of this is also by one of us [12]), and
in this context the representation has proved to be very useful e.g. in connection
with bi-parameter commutators, see [3] and [13].

Outside the multi-parameter context it is true that sparse domination results
yield sharp weighted bounds, and that sparse domination can also be proved di-
rectly (without going through a representation). Such proofs usually start from
the unweighted boundedness assumption, then conclude some weak type esti-
mates, and then finally go about proving the sparse domination. However, we
think that the idea of a so called sparse T1, as coined by Lacey–Mena [8], is ex-
tremely practical. This amounts to concluding a sparse bound directly from the
T1 assumptions (by modifying the probabilistic T1 proof), and then noting that
the sparse bound implies all the standard boundedness properties (even weak
type). Such a combination gives everything in one blow.

We think that a very efficient way to go about things is to first prove a sharp for-
m of a representation theorem working directly from the T1 assumptions. This
is interesting on its own right, entails T1, gives an explicit equality containing
the full dyadic structure of the operator, and can even be used to transfer sparse
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bounds, at least in the form sense, from the model dyadic operators to the singu-
lar integral. This strategy was employed in the linear setting by Culiuc, Di Plinio
and one of us in [2], but of course they were able to cite the linear representation
theorem with T1 assumptions from previous literature [5]. It is also to be noted
that sparse bounds are remarkably simple to prove for dyadic model operators
using the method of [2].

In this paper we, for the first time, prove a representation theorem in the bilin-
ear setting, and we do it starting from the bilinear T1 assumptions. Moreover, we
carry out the above strategy in the bilinear setting i.e. we prove sparse domina-
tion for our model operators and then transfer them back to the singular integral.
In particular, we get a sparse bilinear T1 implying directly the boundedness of
singular integrals from Lp × Lq to Lr for all 1 < p, q < ∞ and 1/2 < r < ∞
satisfying 1/p+1/q = 1/r, and even the boundedness from L1×L1 to L1/2,∞, just
from the T1 assumptions. Of course, one can also recover known sharp weighted
bounds (see e.g. [7]) from sparse domination. It is to be noted though that we
prove sparse domination in the trilinear form sense, as such bounds are easy to
transfer using the representation. A caveat regarding weighted bounds is that
outside the Banach range the literature currently seems to lack an argument giv-
ing sharp weighted bounds from form type domination (but such bounds can be
derived using pointwise sparse domination [1], [9]).

The proof of the representation entails finding a dyadic–probabilistic proof
technique which produces only simple model operators. Some bilinear dyadic–
probabilistic methods were studied by two of us in [11] in the non-homogeneous
setting. However, there seems to be a plethora of possible ways to decompose
things in the bilinear setting, and one has to be quite careful to really get only
nice shifts and nice paraproducts (such that can easily be seen to obey sparse
domination). We now move on to formulating some basic definitions and stating
our theorems.

A function

K : (Rn × Rn × Rn) \∆ → C, ∆ := {(x, y, z) ∈ Rn × Rn × Rn : x = y = z},

is called a standard bilinear Calderón–Zygmund kernel if for some α ∈ (0, 1] and
CK < ∞ it holds that

|K(x, y, z)| ≤ CK

(|x− y|+ |x− z|)2n
,

|K(x, y, z)−K(x′, y, z)| ≤ CK
|x− x′|α

(|x− y|+ |x− z|)2n+α

whenever |x− x′| ≤ max(|x− y|, |x− z|)/2,

|K(x, y, z)−K(x, y′, z)| ≤ CK
|y − y′|α

(|x− y|+ |x− z|)2n+α
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whenever |y − y′| ≤ max(|x− y|, |x− z|)/2, and

|K(x, y, z)−K(x, y, z′)| ≤ CK
|z − z′|α

(|x− y|+ |x− z|)2n+α

whenever |z − z′| ≤ max(|x − y|, |x − z|)/2. The best constant CK is denoted by
∥K∥CZα .

Given a standard bilinear Calderón–Zygmund kernel K we define

Tε(f, g)(x) =

¨
max(|x−y|,|x−z|)>ε

K(x, y, z)f(y)g(z) dy dz.

The above is well-defined as an absolutely convergent integral if e.g. f ∈ Lp1 and
g ∈ Lp2 for some p1, p2 ∈ [1,∞), since then¨

max(|x−y|,|x−z|)>ε

|K(x, y, z)f(y)g(z)| dy dz . 1

εn(1/p1+1/p2)
∥f∥Lp1∥g∥Lp2 .

For us a bilinear Calderón–Zygmund operator is essentially the family of trun-
cations (Tε)ε>0. In particular, this means that boundedness in some Lp spaces is
understood in the sense that all Tε are bounded uniformly in ε > 0.

We shall also define some smoother truncations. Suppose φ ∈ A, where A con-
sists of smooth functions φ : [0,∞) → [0, 1] satisfying that φ = 0 on [0, 1/2], φ = 1
on [1,∞) and ∥φ′∥L∞ ≤ 10. Define the smoothly truncated singular integrals

Tφ
ε (f, g)(x) =

¨
Kφ

ε (x, y, z)f(y)g(z) dy dz, ε > 0,

where

Kφ
ε (x, y, z) = K(x, y, z)φ

( |x− y|+ |x− z|
ε

)
.

The point is that Tφ
ε , ε > 0, are operators with standard bilinear n-dimensional

kernels (with the kernel bounds being independent of ε). Moreover, we have

|Tε(f, g)(x)− Tφ
ε (f, g)(x)| . M(f, g)(x) := sup

r>0

⟨
|f |
⟩
B(x,r)

⟨
|g|
⟩
B(x,r)

,

where
⟨
f
⟩
A
:= 1

|A|

´
A
f . If 0 < ε1 < ε2 we denote by Tφ

ε1,ε2
the operator

Tφ
ε1,ε2

(f, g)(x) = Tφ
ε1
(f, g)(x)− Tφ

ε2
(f, g)(x)

=

¨
Kφ

ε1,ε2
(x, y, z)f(y)g(z) dy dz,

where Kφ
ε1,ε2

= Kφ
ε1
−Kφ

ε2
.

The notation T 1∗ and T 2∗ stand for the adjoints of a bilinear operator T , i.e.

⟨T (f, g), h⟩ = ⟨T 1∗(h, g), f⟩ = ⟨T 2∗(f, h), g⟩.
We can now state our main theorem. For the exact definitions of the various

objects and notions (random dyadic grids, bilinear cancellative shifts, bilinear
paraproducts, weak boundedness, Tδ(1, 1), sparse collections etc.) see the follow-
ing two sections.
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1.1. Theorem. Let K be a bilinear Calderón–Zygmund kernel so that ∥K∥CZα < ∞,
and let (Tε)ε>0 be the corresponding bilinear singular integral. Assume that

sup
δ>0

[∥Tδ∥WBP + ∥Tδ(1, 1)∥BMO + ∥T 1∗
δ (1, 1)∥BMO + ∥T 2∗

δ (1, 1)∥BMO] < ∞.

Let also φ ∈ A. Then there is a constant C = C(n, α) < ∞ so that for all ε > 0 and all
compactly supported and bounded functions f, g and h it holds that

⟨
Tφ
ε (f, g), h

⟩
=C(∥K∥CZα + sup

δ>0
∥Tδ∥WBP)Eω

∞∑
k=0

k∑
i=0

2−αk/2
⟨
U i,k
ε,φ,ω(f, g), h

⟩
+ C(∥K∥CZα + sup

δ>0
∥Tδ(1, 1)∥BMO)Eω

⟨
Πα0(ε,φ,ω)(f, g), h

⟩
+ C(∥K∥CZα + sup

δ>0
∥T 1∗

δ (1, 1)∥BMO)Eω

⟨
Π1∗

α1(ε,φ,ω)
(f, g), h

⟩
+ C(∥K∥CZα + sup

δ>0
∥T 2∗

δ (1, 1)∥BMO)Eω

⟨
Π2∗

α2(ε,φ,ω)
(f, g), h

⟩
,

where each U i,k
ε,φ,ω is a sum of cancellative bilinear shifts Si,i,k

ε,φ,ω, Si,i+1,k
ε,φ,ω and adjoints of

such operators, and Πα stands for a bilinear paraproduct with α as in (3.1). For a fixed ω
the operators above are defined using the dyadic lattice Dω.

The following corollary follows from the sparse domination of shifts and para-
products (see Section 5), and the trivial sparse bound for M.

1.2. Corollary. There exist dyadic grids Di, i = 1, . . . , 3n, with the following property.
Let η ∈ (0, 1). For compactly supported and bounded functions f, g and h there is a
dyadic grid Di and an η-sparse collection S = S(f, g, h, η) ⊂ Di so that the following
holds.

Let K be any standard bilinear Calderón–Zygmund kernel and (Tε)ε>0 be the corre-
sponding bilinear singular integral. Then we have

sup
ε>0

|
⟨
Tε(f, g), h

⟩
| ≤ CT,KΛS(f, g, h),

where

CT,K := C(∥K∥CZα + sup
ε>0

∥Tε(1, 1)∥BMO + sup
ε>0

∥T 1∗
ε (1, 1)∥BMO

+ sup
ε>0

∥T 2∗
ε (1, 1)∥BMO + sup

ε>0
∥Tε∥WBP)

for some C = C(n, α, η) < ∞ and

ΛS(f, g, h) :=
∑
Q∈S

|Q|
⟨
|f |
⟩
Q

⟨
|g|
⟩
Q

⟨
|h|
⟩
Q
.

Additional notation. We write A . B, if there is an absolute constant C > 0
(depending only on some fixed constants like n and α etc.) so that A ≤ CB.
Moreover, A .τ B means that the constant C can also depend on some relevant
given parameter τ > 0. We may also write A ∼ B if B . A . B.
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We then define some notation related to cubes. If Q and R are two cubes we
set:

• ℓ(Q) is the side-length of Q;
• If a > 0, we denote by aQ the cube that is concentric with Q and has

sidelength aℓ(Q);
• d(Q,R) = dist(Q,R) denotes the distance between the cubes Q and R;
• ch(Q) denotes the dyadic children of Q;
• If Q is in a dyadic grid, then Q(k) denotes the unique dyadic cube S in the

same grid so that Q ⊂ S and ℓ(S) = 2kℓ(Q);
• If D is a dyadic grid, then Dk = {Q ∈ D : ℓ(Q) = 2−k};

The notation ⟨f, g⟩ stands for the pairing
´
fg.

The following maximal functions are also used:

MDf(x) = sup
Q∈D

1Q(x)⟨|f |⟩Q (D is a dyadic grid);

Mf(x) = sup
r>0

⟨|f |⟩B(x,r).

Here B(x, r) = {y : |x − y| < r}. The bilinear variants are defined in the natural
way, e.g.

M(f, g)(x) = sup
r>0

⟨|f |⟩B(x,r)⟨|g|⟩B(x,r).
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nia, during the Spring 2017 semester when this work was carried out, and was
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2. BASIC DEFINITIONS

2.1. Random dyadic grids, martingales, Haar functions. Let ω = (ωi)i∈Z, where
ωi ∈ {0, 1}n. Let D0 be the standard dyadic grid on Rn. We define the new dyadic
grid

Dω =
{
I +

∑
i: 2−i<ℓ(I)

2−iωi : I ∈ D0

}
= {I + ω : I ∈ D0},

where we simply have defined I + ω := I +
∑

i: 2−i<ℓ(I) 2
−iωi. There is a natural

product probability measure Pω = P on ({0, 1}n)Z – this gives us the notion of
random dyadic grids ω 7→ Dω.
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A cube I ∈ D = Dω is called bad if there exists such a cube J ∈ D that ℓ(J) ≥
2rℓ(I) and

d(I, ∂J) ≤ ℓ(I)γℓ(J)1−γ.

Here γ = α/(2[2n + α]), where α > 0 appears in the kernel estimates. Otherwise
a cube is called good. We note that πgood := Pω(I + ω is good) is independent of
the choice of I ∈ D0. The appearing parameter r is a large enough fixed constant
so that πgood > 0. Moreover, for a fixed I ∈ D0 the set I + ω depends on ωi with
2−i < ℓ(I), while the goodness of I + ω depends on ωi with 2−i ≥ ℓ(I). These
notions are thus independent by the product probability structure.

For I ∈ D and a locally integrable function f we define the martingale differ-
ence

∆If =
∑

I′∈ch(I)

[⟨
f
⟩
I′
−
⟨
f
⟩
I

]
1I′ .

We have the standard estimate∥∥∥(∑
I∈D

|∆If |2
)1/2∥∥∥

Lp
∼ ∥f∥Lp , 1 < p < ∞.

Writing I = I1 × · · · × In we can define the Haar function hη
I , η = (η1, . . . , ηn) ∈

{0, 1}n, by setting
hη
I = hη1

I1
⊗ · · · ⊗ hηn

In
,

where h0
Ii
= |Ii|−1/21Ii and h1

Ii
= |Ii|−1/2(1Ii,l − 1Ii,r) for every i = 1, . . . , n. Here

Ii,l and Ii,r are the left and right halves of the interval Ii respectively. If η ̸= 0 the
Haar function is cancellative:

´
hη
I = 0. We have that

∆If =
∑

η∈{0,1}n\{0}

⟨
f, hη

I

⟩
hη
I ,

but for convenience we understand that the η summation is suppressed and sim-
ply write

∆If =
⟨
f, hI

⟩
hI .

In this paper hI always denotes a cancellative Haar function (i.e. hI = hη
I for

some η ̸= 0). A non-cancellative Haar function is explicitly denoted by h0
I .

2.2. Testing conditions: BMO and WBP. Let K be a standard bilinear Calderón-
Zygmund kernel, and let {Tε}ε>0 be the related family of truncated operators. We
recall a usual interpretation of Tε(1, 1) and what is means that it belongs BMO.

Fix some ε > 0. Let R ⊂ Rn be a closed cube and let ϕ be an L∞ function
supported in R such that

´
ϕ = 0. Let C = C(ε) ≥ 3 be any large constant so that

2−1(C − 1)ℓ(R) > ε, whence |x− y| > ε for all x ∈ R and y ̸∈ CR. We define⟨
Tε(1, 1), ϕ

⟩
:=
⟨
Tε(1CR, 1CR), ϕ

⟩
+

˚ (
K(x, y, z)−K(cR, y, z)

)
1(CR×CR)c(y, z)ϕ(x) dy dz dx.

(2.1)
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Applying the x-Hölder estimate of the kernel it is seen that the integral is abso-
lutely convergent. It is straightforward to check that the right hand side of (2.1)
is independent of the cube R and the constant C as long as ϕ is supported in R
and 2−1(C − 1)ℓ(R) > ε, C ≥ 3.

If φ ∈ A and ϕ is as above, we define⟨
Tφ
ε (1, 1), ϕ

⟩
:=
⟨
Tφ
ε (1CR, 1CR), ϕ

⟩
+

˚ (
Kφ

ε (x, y, z)−Kφ
ε (cR, y, z)

)
1(CR×CR)c(y, z)ϕ(x) dy dz dx

(2.2)

for any closed cube R containing the support of ϕ and any C ≥ 3, say.

2.3. Definition. Let ε > 0. Suppose K is a standard bilinear Calderón-Zygmund
kernel, and let Tε be the related truncated operator. We say that Tε(1, 1) is in BMO,
and write Tε(1, 1) ∈ BMO, if there exists a constant C so that for all closed cubes
R and all functions ϕ supported in R such that ∥ϕ∥L∞ ≤ 1 and

´
ϕ = 0 there holds

(2.4)

∣∣⟨Tε(1, 1), ϕ
⟩∣∣

|R|
≤ C.

We denote the smallest constant C in (2.4) by ∥Tε(1, 1)∥BMO.
If φ ∈ A, the corresponding definition for the smoothly truncated operator Tφ

ε

is obtained just by replacing Tε by Tφ
ε .

In the representation theorem we will assume that Tε(1, 1) ∈ BMO. The follow-
ing simple lemma shows that the conditions Tε(1, 1) ∈ BMO and Tφ

ε (1, 1) ∈ BMO
are equivalent.

2.5. Lemma. Suppose K is a standard bilinear Calderón-Zygmund kernel and let ε > 0
and φ ∈ A. Then

∥Tφ
ε (1, 1)∥BMO ≤ C

(
∥K∥CZα + ∥Tε(1, 1)∥BMO

)
and

∥Tε(1, 1)∥BMO ≤ C
(
∥K∥CZα + ∥Tφ

ε (1, 1)∥BMO

)
.

Proof. Fix a closed cube R and a function ϕ supported in R such that ∥ϕ∥L∞ ≤ 1
and
´
ϕ = 0. Then, using the definitions (2.1) and (2.2), one sees that∣∣⟨Tε(1, 1), ϕ

⟩
−
⟨
Tφ
ε (1, 1), ϕ

⟩∣∣ = ∣∣⟨Tε(1CR, 1CR), ϕ
⟩
−
⟨
Tφ
ε (1CR, 1CR), ϕ

⟩∣∣
.
⟨
M(1CR, 1CR), |ϕ|

⟩
≤
ˆ

|ϕ|dx ≤ |R|.

The claim follows from this estimate. �
For the convenience of the reader we state the following lemma on the equiv-

alence of some BMO type conditions – although Tφ
ε (1, 1) is not stricly speaking a

function, the lemma nevertheless follows from John–Nirenberg by standard ar-
guments. Therefore, the paraproducts we will encounter can be made to obey
the normalisation in (3.1).
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2.6. Lemma. Suppose K is a standard bilinear Calderón-Zygmund kernel and let ε > 0
and φ ∈ A. Suppose D is a dyadic lattice. Then

sup
R∈D

1

|R|
∑
Q∈D
Q⊂R

∣∣⟨Tφ
ε (1, 1), hQ

⟩∣∣2 ≤ C∥Tφ
ε (1, 1)∥2BMO

for some absolute constant C.

Next, we give the definition of weak boundedness property.

2.7. Definition. The weak boundedness property constant ∥Tε∥WBP is the best
constant C so that the inequality

|
⟨
Tε(1I , 1I), 1I

⟩
| ≤ C|I|

holds for all cubes I ⊂ Rn.

2.3. Sparse collections. A collection S of cubes is said to be η-sparse (or just s-
parse), 0 < η < 1, if for any Q ∈ S there exists EQ ⊂ Q so that |EQ| > η|Q| and
{EQ : Q ∈ S} are pairwise disjoint. The definition does not require the cubes to
be part of some fixed dyadic grid. Although, it can be convenient to know that
in Corollary 1.2 the sparse family S can always be found inside one of the fixed
dyadic grids Di, #i . 1.

3. BILINEAR SHIFTS

In this section all cubes are part of some fixed dyadic grid D. We will introduce
certain cancellative shifts and paraproducts in this section. We will also show
their boundedness Lp × Lq → Lr in the simple case 1 < p, q, r < ∞ satisfying
1/p + 1/q = 1/r. The restriction r > 1 can be lifted after we have shown the
sparse domination (see Section 5).

3.1. Cancellative bilinear shifts. Define for i, j, k ≥ 0 the bilinear shift (f, g) 7→
Si,j,k(f, g) by setting

Si,j,k(f, g) =
∑
Q

Ai,j,k
Q (f, g),

where
Ai,j,k

Q (f, g) =
∑

I,J,K⊂Q

ℓ(I)=2−iℓ(Q)

ℓ(J)=2−jℓ(Q)

ℓ(K)=2−kℓ(Q)

αI,J,K,Q

⟨
f, h̃I

⟩⟨
g, h̃J

⟩
hK

and
(h̃I , h̃J) ∈

{
(hI , hJ), (h

0
I , hJ)(hI , h

0
J)
}
.

We also demand that

|αI,J,K,Q| ≤
|I|1/2|J |1/2|K|1/2

|Q|2
.
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Such a shift will be considered to be a cancellative bilinear shift. Also the duals of
these operators will be used in the representation.

Let 1 < p, q, r < ∞ be such that 1/p+ 1/q = 1/r. We show that

∥Si,j,k(f, g)∥Lr . ∥f∥Lp∥g∥Lq

with the constant independent of the shift in question, and only depending on
p, q, r. To do this, we may assume without loss of generality that for example
h̃I = hI for all I (a general shift can be split into two shifts where h̃I = hI for
all I in one of them and h̃J = hJ for all J in the other). Notice that we have the
pointwise estimate

|Ai,j,k
Q (f, g)| ≤

⟨
|f |
⟩
Q

⟨
|g|
⟩
Q
1Q.

Define also
Di

Qf =
∑
I⊂Q

ℓ(I)=2−iℓ(Q)

⟨
f, hI

⟩
hI .

Since Ai,j,k
Q (f, g) = Ai,j,k

Q (Di
Qf, g), we have

|Ai,j,k
Q (f, g)| ≤ MDg

⟨
|Di

Qf |
⟩
Q
1Q.

Notice that∥∥∥(∑
Q

|Di
Qf |2

)1/2∥∥∥
Lp

=
∥∥∥(∑

I

|∆If |2
)1/2∥∥∥

Lp
∼ ∥f∥Lp , 1 < p < ∞.

Let 1 < p, q, r < ∞ be such that 1/p+ 1/q = 1/r. Using the above we see that

∥Si,j,k(f, g)∥Lr ∼
∥∥∥(∑

Q

|Dk
Q(S

i,j,k(f, g))|2
)1/2∥∥∥

Lr
=
∥∥∥(∑

Q

|Ai,j,k
Q (f, g)|2

)1/2∥∥∥
Lr
.

Now, we have∥∥∥(∑
Q

|Ai,j,k
Q (f, g))|2

)1/2∥∥∥
Lr

≤
∥∥∥MDg

(∑
Q

⟨
|Di

Qf |
⟩2
Q
1Q

)1/2∥∥∥
Lr

≤
∥∥∥(∑

Q

⟨
|Di

Qf |
⟩2
Q
1Q

)1/2∥∥∥
Lp
∥MDg∥Lq

.
∥∥∥(∑

Q

|Di
Qf |2

)1/2∥∥∥
Lp
∥g∥Lq . ∥f∥Lp∥g∥Lq .

3.2. Bilinear paraproduct. Let α = {αK}K∈D be sequence of complex numbers
such that

(3.1)
1

|K0|
∑

K : K⊂K0

|αK |2 ≤ 1
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for all K0 ∈ D. We define the bilinear paraproduct

Πα(f, g) =
∑
K

αK

⟨
f
⟩
K

⟨
g
⟩
K
hK .

To deal with this it is useful to recall the usual (linear) paraproduct

παf =
∑
K

αK

⟨
f
⟩
K
hK .

It is well known that πα : L
r → Lr boundedly for 1 < r < ∞ because of the

condition (3.1). An elegant way to do this directly in Lr is in [6]. It follows that
Πα : L

p × Lq → Lr boundedly for 1 < p, q, r < ∞ satisfying 1/r = 1/p + 1/q.
Indeed, it holds that

∥Πα(f, g)∥Lr ∼
∥∥∥(∑

K

|αK |2|
⟨
f
⟩
K
|2|
⟨
g
⟩
K
|2 1K
|K|

)1/2∥∥∥
Lr

≤
∥∥∥(∑

K

|αK |2
⟨
MD(f, g)

⟩2
K

1K
|K|

)1/2∥∥∥
Lr

∼ ∥πα(MD(f, g))∥Lr . ∥MD(f, g)∥Lr . ∥f∥Lp∥g∥Lq .

4. PROOF OF THE BILINEAR REPRESENTATION THEOREM, THEOREM 1.1

Consider an arbitrary ε1 > 0 and let f , g and h be bounded functions with
compact support. For the moment, let ε2 > ε1 be arbitrary, and write T = Tφ

ε1,ε2

and K = Kφ
ε1,ε2

. This is an a priori bounded operator (for example in the L4 ×
L4 → L2 sense), which makes the calculations below legit. We will decompose⟨
T (f, g), h

⟩
first, and take the limit ϵ2 → ∞ at the end.

Begin by decomposing
⟨
T (f, g), h

⟩
as⟨

T (f, g), h
⟩
= Eω

∑
K∈Dω

∑
I∈Dω

ℓ(K)≤ℓ(I)

∑
J∈Dω

ℓ(K)≤ℓ(J)

⟨
T (∆If,∆Jg),∆Kh

⟩
+ Eω

∑
I∈Dω

∑
J∈Dω

ℓ(I)≤ℓ(J)

∑
K∈Dω

ℓ(I)<ℓ(K)

⟨
T 1∗(∆Kh,∆Jg),∆If

⟩
+ Eω

∑
J∈Dω

∑
I∈Dω

ℓ(J)<ℓ(I)

∑
K∈Dω

ℓ(J)<ℓ(K)

⟨
T 2∗(∆If,∆Kh),∆Jg

⟩
=: Σ1 + Σ2 + Σ3.

We focus on the first sum Σ1, and at this point write∑
K∈Dω

∑
I∈Dω

ℓ(K)≤ℓ(I)

∑
J∈Dω

ℓ(K)≤ℓ(J)

⟨
T (∆If,∆Jg),∆Kh

⟩
=
∑

K∈Dω

⟨
T (Eω

ℓ(K)/2f, E
ω
ℓ(K)/2g),∆Kh

⟩
,
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where
Eω

ℓ(K)/2f =
∑
I∈Dω

ℓ(I)=ℓ(K)/2

1I
⟨
f
⟩
I
.

The point of doing this is to gain the needed independence for the argument
below (this seems to be a new simpler way to add goodness than in [5], and is
straightforward to use also in this bilinear setting). Write now Dω = D0+ω to the
end that∑

K∈Dω

⟨
T (Eω

ℓ(K)/2f, E
ω
ℓ(K)/2g),∆Kh

⟩
=
∑
K∈D0

⟨
T (Eω

ℓ(K)/2f, E
ω
ℓ(K)/2g),∆K+ωh

⟩
.

Next, we write

Σ1 = Eω

∑
K∈D0

⟨
T (Eω

ℓ(K)/2f, E
ω
ℓ(K)/2g),∆K+ωh

⟩
=

1

πgood

∑
K∈D0

Eω[1good(K + ω)]Eω[
⟨
T (Eω

ℓ(K)/2f, E
ω
ℓ(K)/2g),∆K+ωh

⟩
]

=
1

πgood
Eω

∑
K∈Dω, good

⟨
T (Eω

ℓ(K)/2f, E
ω
ℓ(K)/2g),∆Kh

⟩
=:

1

πgood
EωΣ

1(ω),

where we used independence: 1good(K + ω) depends on ωj for 2−j ≥ ℓ(K) while
Eω

ℓ(K)/2f depends on ωj for 2−j < ℓ(K)/2 < ℓ(K), same for Eω
ℓ(K)/2g, and ∆Kh

depends on ωj for 2−j < ℓ(K).
Fix ω and let Dω = D. We will now start finding the shift structure in the sum

Σ1(ω) i.e. ∑
K∈Dgood

∑
I∈D

ℓ(K)≤ℓ(I)

∑
J∈D

ℓ(K)≤ℓ(J)

⟨
T (∆If,∆Jg),∆Kh

⟩
.

The double sum
∑

I∈D
ℓ(K)≤ℓ(I)

∑
J∈D

ℓ(K)≤ℓ(J)
can be organised as∑

I∈D
ℓ(K)≤ℓ(I)

∑
J∈D

ℓ(I)≤ℓ(J)

+
∑
J∈D

ℓ(K)≤ℓ(J)

∑
I∈D

ℓ(J)<ℓ(I)

.

This leads to the fact that∑
K∈Dgood

∑
I∈D

ℓ(K)≤ℓ(I)

∑
J∈D

ℓ(K)≤ℓ(J)

⟨
T (∆If,∆Jg),∆Kh

⟩
=

∑
K∈Dgood

∑
I∈D

ℓ(K)≤ℓ(I)

⟨
T (∆If, Eℓ(I)/2g),∆Kh

⟩
+

∑
K∈Dgood

∑
J∈D

ℓ(K)≤ℓ(J)

⟨
T (Eℓ(J)f,∆Jg),∆Kh

⟩
=: σ1 + σ2.
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We will now mostly focus on the part

σ1 =
∑

K∈Dgood

∑
I∈D

ℓ(K)≤ℓ(I)

⟨
T (∆If, Eℓ(I)/2g),∆Kh

⟩
=

∑
K∈Dgood

∑
I∈D

ℓ(K)≤ℓ(I)

∑
J∈D

ℓ(J)=ℓ(I)/2

⟨
T (∆If, 1J

⟨
g
⟩
J
),∆Kh

⟩
.

However, to get a simple paraproduct it is crucial to combine i.e. sum up the
paraproduct parts from these two parts σ1 and σ2.

Step I: separated part. In this section we consider

σ1
1 :=

∑
K∈Dgood

∑
I,J∈D :

ℓ(K)≤ℓ(I)=2ℓ(J)
max(d(K,I),d(K,J))>ℓ(K)γℓ(J)1−γ

⟨
T (∆If, 1J

⟨
g
⟩
J
),∆Kh

⟩

=
∑

K∈Dgood

∑
I,J∈D :

ℓ(K)≤ℓ(I)=2ℓ(J)
max(d(K,I),d(K,J))>ℓ(K)γℓ(J)1−γ

⟨
T (hI , h

0
J), hK

⟩⟨
f, hI

⟩⟨
g, h0

J

⟩⟨
h, hK

⟩
.

We need the existence of certain nice parents, the proof in the bilinear setting is
essentially the same as in [5].

4.1. Lemma. For I, J,K as in σ1
1 there exists a cube Q ∈ D so that I ∪ J ∪K ⊂ Q and

max(d(K, I), d(K, J)) & ℓ(K)γℓ(Q)1−γ.

Proof. Let Q ∈ D be the minimal parent of K for which both of the following two
conditions hold:

• ℓ(Q) ≥ 2rℓ(K);
• max(d(K, I), d(K, J)) ≤ ℓ(K)γℓ(Q)1−γ .

Since ℓ(Q) ≥ 2rℓ(K), the goodness of K gives that

ℓ(K)γℓ(Q)1−γ < d(K,Qc).

If we would have that I ⊂ Qc or J ⊂ Qc we would get

ℓ(K)γℓ(Q)1−γ < max(d(K, I), d(K, J)) ≤ ℓ(K)γℓ(Q)1−γ,

which is a contradiction. Therefore, we have I ∩Q ̸= ∅ and J ∩Q ̸= ∅. Moreover,
we have

ℓ(K)γℓ(J)1−γ < max(d(K, I), d(K, J)) ≤ ℓ(K)γℓ(Q)1−γ

implying that ℓ(Q) > ℓ(J), and so also ℓ(Q) ≥ ℓ(I). This implies I ∪ J ∪K ⊂ Q.
It remains to note that the estimate max(d(K, I), d(K, J)) & ℓ(K)γℓ(Q)1−γ is a

trivial consequence of the minimality of Q. Indeed, there is something to check
only if Q is minimal because ℓ(Q) . ℓ(K). But then ℓ(Q) . ℓ(J) and we get

ℓ(K)γℓ(Q)1−γ . ℓ(K)γℓ(J)1−γ < max(d(K, I), d(K, J)).
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�

For I, J,K as in σ1
1 we let Q = I ∨ J ∨ K be the minimal cube Q ∈ D so that

I ∪ J ∪K ⊂ Q. We then know that

(4.2) max(d(K, I), d(K, J)) & ℓ(K)γℓ(Q)1−γ.

Let us write

σ1
1 =

∞∑
k=0

k∑
i=0

∑
Q∈D

∑
I,J∈D,K∈Dgood

max(d(K,I),d(K,J))>ℓ(K)γℓ(J)1−γ

2ℓ(J)=ℓ(I)=2−iℓ(Q), ℓ(K)=2−kℓ(Q)

I∨J∨K=Q

⟨
T (hI , h

0
J), hK

⟩⟨
f, hI

⟩⟨
g, h0

J

⟩⟨
h, hK

⟩
.

Next, we define

αI,J,K,Q =

⟨
T (hI , h

0
J), hK

⟩
C(ℓ(K)/ℓ(Q))α/2

if I, J ∈ D, K ∈ Dgood, max(d(K, I), d(K, J)) > ℓ(K)γℓ(J)1−γ , ℓ(K) ≤ ℓ(I) = 2ℓ(J)
and I ∨ J ∨K = Q, and αI,J,K,Q = 0 otherwise. We can then write for fixed k ≥ 0
and i ≤ k that∑
Q∈D

∑
I,J∈D,K∈Dgood

max(d(K,I),d(K,J))>ℓ(K)γℓ(J)1−γ

2ℓ(J)=ℓ(I)=2−iℓ(Q), ℓ(K)=2−kℓ(Q)

I∨J∨K=Q

⟨
T (hI , h

0
J), hK

⟩⟨
f, hI

⟩⟨
g, h0

J

⟩
hK

= C2−αk/2
∑
Q∈D

∑
I,J,K⊂Q

ℓ(I)=2−iℓ(Q)

ℓ(J)=2−i−1ℓ(Q)

ℓ(K)=2−kℓ(Q)

αI,J,K,Q

⟨
f, hI

⟩⟨
g, h0

J

⟩
hK =: C2−αk/2Si,i+1,k(f, g),

which gives

σ1
1 = C

∞∑
k=0

k∑
i=0

2−kα/2
⟨
Si,i+1,k(f, g), h

⟩
.

It remains to verify that

|αI,J,K,Q| ≤
|I|1/2|J |1/2|K|1/2

|Q|2

for an appropriate choice of the constant C depending on the kernel estimates.
We fix I, J,K,Q so that αI,J,K,Q ̸= 0. Notice that |x− cK | ≤ ℓ(K)/2 (we are using
the ℓ∞ distance) for x ∈ K while

max(|x−y|, |x−z|) ≥ max(d(K, I), d(K, J)) > ℓ(K)γℓ(J)1−γ ≥ 2γ
ℓ(K)

2
≥ 2γ|x−cK |
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for x ∈ K, y ∈ I and z ∈ J . Therefore, we have by the Hölder estimate in the x
variable and the estimate (4.2) that

|
⟨
T (hI , h

0
J), hK

⟩
| . ∥hI∥L1∥h0

J∥L1∥hK∥L1

ℓ(K)α

max(d(K, I), d(K, J))2n+α

. |I|1/2|J |1/2|K|1/2 ℓ(K)α

(ℓ(K)γℓ(Q)1−γ)2n+α

=
|I|1/2|J |1/2|K|1/2

|Q|2
(ℓ(K)

ℓ(Q)

)α−γ(2n+α)

=
|I|1/2|J |1/2|K|1/2

|Q|2
(ℓ(K)

ℓ(Q)

)α/2
.

This establishes the desired normalisation, and therefore we are done with σ1
1 .

Step II: diagonal. Here we look at the sum

σ1
2 :=

∑
K∈Dgood

∑
I,J∈D :

ℓ(K)≤ℓ(I)=2ℓ(J)
max(d(K,I),d(K,J))≤ℓ(K)γℓ(J)1−γ

K∩I=∅ or K=I or K∩J=∅

⟨
T (∆If, 1J

⟨
g
⟩
J
),∆Kh

⟩

=
∑

K∈Dgood

∑
I,J∈D :

ℓ(K)≤ℓ(I)=2ℓ(J)≤2rℓ(K)
max(d(K,I),d(K,J))≤ℓ(K)γℓ(J)1−γ

K∩I=∅ or K=I or K∩J=∅

⟨
T (hI , h

0
J), hK

⟩⟨
f, hI

⟩⟨
g, h0

J

⟩⟨
h, hK

⟩
.

The goodness of the cube K was used to conclude that we cannot have ℓ(I) >
2rℓ(K). Indeed, in the case K ∩ I = ∅ this would imply d(K, I) > ℓ(K)γℓ(I)1−γ ≥
ℓ(K)γℓ(J)1−γ – a contradiction. In the case K ∩ J = ∅ we would have (as ℓ(J) ≥
2rℓ(K)) that d(K, J) > ℓ(K)γℓ(J)1−γ – a contradiction.

4.3. Lemma. For I, J,K as in σ1
2 there exists a cube Q ∈ D so that I ∪ J ∪K ⊂ Q and

ℓ(Q) ≤ 2rℓ(K).

Proof. Define Q = K(r). Then ℓ(Q) = 2rℓ(K) ≥ ℓ(I) > ℓ(J). Therefore, it suffices
to show that I ∩ Q ̸= ∅ and J ∩ Q ̸= ∅. But this is essentially the same argument
as previously: If we would have that I ⊂ Qc or J ⊂ Qc, we would get

ℓ(K)γℓ(Q)1−γ < d(K,Qc) ≤ max(d(K, I), d(K, J)) ≤ ℓ(K)γℓ(J)1−γ,

which implies ℓ(J) > ℓ(Q) – a contradiction. �
We can now write

σ1
2 =

r∑
k=0

k∑
i=0

∑
Q

∑
I,J∈D,K∈Dgood :

max(d(K,I),d(K,J))≤ℓ(K)γℓ(J)1−γ

K∩I=∅ or K=I or K∩J=∅
2ℓ(J)=ℓ(I)=2−iℓ(Q), ℓ(K)=2−kℓ(Q)

I∨J∨K=Q

⟨
T (hI , h

0
J), hK

⟩⟨
f, hI

⟩⟨
g, h0

J

⟩⟨
h, hK

⟩
.
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Notice that if K ∩ I = ∅ then

|
⟨
T (hI , h

0
J), hK

⟩
| . |I|−1/2|J |−1/2|K|−1/2

ˆ
10I\I

ˆ
I

dy dx

|x− y|n

. |I|1/2|J |−1/2|K|−1/2 ∼ |I|1/2|J |1/2|K|1/2

|Q|2
(ℓ(K)

ℓ(Q)

)α/2
.

We get the same bound also if K ∩ J = ∅ with an analogous calculation. So we
only need to estimate in the case K = I and J ∈ ch(K). Then we have

|
⟨
T (hK , h

0
J), hK

⟩
| . |K|−3/2

∑
K′,K′′∈ch(K)

|
⟨
T (1K′ , 1J), 1K′′

⟩
|.

If K ′ ̸= J or K ′′ ̸= J then |
⟨
T (1K′ , 1J), 1K′′

⟩
| . |K| simply by the size estimate

of the kernel. In the case K ′ = K ′′ = J we have using the weak boundedness
property that |

⟨
T (1J , 1J), 1J

⟩
| . |K|. So in the case K = I and J ∈ ch(K) we also

have

|
⟨
T (hK , h

0
J), hK

⟩
| . |K|−1/2 ∼ |I|1/2|J |1/2|K|1/2

|Q|2
(ℓ(K)

ℓ(Q)

)α/2
.

The above lets us write

σ1
2 = C

r∑
k=0

k∑
i=0

2−kα/2
⟨
Si,i+1,k(f, g), h

⟩
for cancellative bilinear shifts Si,i+1,k, where C depends on the kernel estimates
and the weak boundedness property. We point out at this point that since T =
Tφ
ε1,ε2

= Tφ
ε1
− Tφ

ε2
, there holds

∥T∥WBP ≤ C ′(∥K∥CZα + sup
δ>0

∥Tδ∥WBP).

4.1. Step III: error terms. Here we start working with the sum

σ1
3 :=

∑
I,J∈D,K∈Dgood

ℓ(I)=2ℓ(J)
K⊂J⊂I

⟨
T (∆If, 1J

⟨
g
⟩
J
),∆Kh

⟩

=
∑

J∈D,K∈Dgood

K⊂J

⟨
T (∆J(1)f, 1J),∆Kh

⟩⟨
g
⟩
J
.

We split⟨
T (∆J(1)f, 1J),∆Kh

⟩
=
⟨
T (1Jc(∆J(1)f −

⟨
∆J(1)f

⟩
J
), 1J),∆Kh

⟩
−
⟨
∆J(1)f

⟩
J

⟨
T (1, 1Jc),∆Kh

⟩
+
⟨
∆J(1)f

⟩
J

⟨
T (1, 1),∆Kh

⟩
.

This gives us the decomposition σ1
3 = σ1

3,e + σ1
3,π, where the first two terms of the

above decomposition are part of σ1
3,e.
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In this section we only deal with the error term σ1
3,e. Notice that

σ1
3,e =

∑
J∈D,K∈Dgood

K⊂J

|J |−1/2
[⟨
T (sJ , 1J), hK

⟩
−
⟨
hJ(1)

⟩
J

⟨
T (1, 1Jc), hK

⟩]⟨
f, hJ(1)

⟩⟨
g, h0

J

⟩⟨
h, hK

⟩
,

where sJ := 1Jc(hJ(1) −
⟨
hJ(1)

⟩
J
) satisfies |sJ | . |J |−1/2 and spt sJ ⊂ Jc.

We will first bound |
⟨
T (sJ , 1J), hK

⟩
|. In the case ℓ(J) ∼ ℓ(K) we are looking for

the bound |
⟨
T (sJ , 1J), hK

⟩
| . 1. This follows by writing

|
⟨
T (sJ , 1J), hK

⟩
| ≤ |

⟨
T (13JsJ , 1J), hK

⟩
|+ |

⟨
T (1(3J)csJ , 1J), hK

⟩
|,

and using the size and Hölder estimate in the x-variable respectively. If ℓ(J) ≥
2rℓ(K) we have d(K, J c) ≥ ℓ(K)γℓ(J)1−γ ≥ ℓ(K)1/2ℓ(J)1/2. Therefore, Hölder
estimate in the x-variable gives

|
⟨
T (sJ , 1J), hK

⟩
| . |K|−1/2|J |−1/2ℓ(K)α

ˆ
K

ˆ
Jc

dy

|x− y|n+α
dx

. |K|1/2|J |−1/2
(ℓ(K)

ℓ(J)

)α/2
.

Notice that this is ∼ 1 if ℓ(J) ∼ ℓ(K), so the same estimate holds in both cases.
It is now also obvious, using almost exactly the same calculations as above,

that

|
⟨
T (1, 1Jc), hK

⟩
| . |K|1/2

(ℓ(K)

ℓ(J)

)α/2
.

But as |
⟨
hJ(1)

⟩
J
| . |J |−1/2 we have the same bound as above. Therefore, we can

write

σ1
3,e = C

∞∑
k=1

2−αk/2
⟨
S0,1,k(f, g), h

⟩
for some cancellative bilinear shifts and for some C depending on the kernel
estimates.

4.2. Part IV: paraproduct. Here we combine

σ1
3,π =

∑
J∈D,K∈Dgood

K⊂J

⟨
T (1, 1),∆Kh

⟩⟨
∆J(1)f

⟩
J

⟨
g
⟩
J

with the relevant paraproduct type term coming from σ2, namely

σ2
3,π =

∑
J∈D,K∈Dgood

K⊂J

⟨
T (1, 1),∆Kh

⟩⟨
f
⟩
J(1)

⟨
∆J(1)g

⟩
J
.

Notice the key cancellation⟨
∆J(1)f

⟩
J

⟨
g
⟩
J
+
⟨
f
⟩
J(1)

⟨
∆J(1)g

⟩
J
=
⟨
f
⟩
J

⟨
g
⟩
J
−
⟨
f
⟩
J(1)

⟨
g
⟩
J(1) .
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Therefore, we get

σ1
3,π + σ2

3,π =
∑

K∈Dgood

⟨
T (1, 1),∆Kh

⟩⟨
f
⟩
K

⟨
g
⟩
K
.

Define

(4.4) αK =

⟨
T (1, 1), hK

⟩
C
(
∥K∥CZα + supδ>0 ∥Tδ(1, 1)∥BMO

)
if K is good, where C is a large enough absolute constant, and otherwise set
αK = 0. Recall that T = Tφ

ε1,ε2
= Tφ

ε1
− Tφ

ε2
, whence in view of Lemma 2.5 and

Lemma 2.6 the numbers αK satisfy the correct normalisation (3.1). Hence we can
write

σ1
3,π + σ2

3,π = C
(
∥K∥CZα + sup

δ>0
∥Tδ(1, 1)∥BMO

)
⟨Πα(f, g), h⟩.

4.3. Synthesis. Let us collect the pieces of the above steps together. Recall that
the operator T is actually Tφ

ε1,ε2
. We have shown that

Σ1(ω) = C(∥K∥CZα + sup
δ>0

∥Tδ∥WBP)
∞∑
k=0

k∑
i=0

2−αk/2
⟨
U i,k
ε1,ε2,φ,ω

(f, g), h
⟩

+ C(∥K∥CZα + sup
δ>0

∥Tδ(1, 1)∥BMO)
⟨
Πα0(ε1,ε2,φ,ω)(f, g), h

⟩
,

where each U i,k
ε1,ε2,φ,ω

is a sum of cancellative shifts Si,i,k
ε1,ε2,φ,ω

and Si,i+1,k
ε1,ε2,φ,ω

, and
where Πα0(ε1,ε2,φ,ω) is the paraproduct related to the sequence defined around E-
quation (4.4). Collecting together the symmetric parts we get the result of Theo-
rem 1.1 except we have the dependence on ϵ2 on both sides. However, it is clear
that

⟨
Tφ
ε1,ε2

(f, g), h
⟩
=
⟨
Tφ
ε1
(f, g), h

⟩
if ϵ2 is large enough (depending on the sup-

ports of f, g and h.) Thus, it is enough to do some limiting argument ϵ2 → ∞ on
the right hand side also.

The operators U i,k
ε1,ε2,φ,ω

depend on ε1, ε2 and φ because the coefficients of the
shifts are defined using the operator Tφ

ε1,ε2
. Let U i,k

ε1,φ,ω
be the corresponding op-

erator, but where the coefficients of the shifts are defined with the operator Tφ
ε1

instead. Do the similar thing with the paraproducts. Dominated convergence
theorem shows that it is enough to show that⟨

U i,k
ε1,ε2,φ,ω

(f, g), h
⟩
→
⟨
U i,k
ε1,φ,ω

(f, g), h
⟩
,

when ϵ2 → ∞, and similarly for the paraproducts. The convergence of the above
pairings is simply based on the fact that the coefficients of the shifts defined with
Tφ
ε1,ε2

approach to the ones defined with Tφ
ε1

. Let us quickly show the argument
for the paraproduct, the same reasoning applies for the cancellative shifts.

It is enough to show that

lim
ϵ2→∞

∣∣∣ ∑
K∈Dgood

⟨
Tφ
ε2
(1, 1), hK

⟩⟨
f
⟩
K

⟨
g
⟩
K

⟨
h, hK

⟩∣∣∣ = 0.
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Fix M > 0. Notice that using supδ>0 ∥T
φ
δ (1, 1)∥BMO < ∞ and the boundness of the

paraproduct there holds for every ϵ2 > 0 that∣∣∣ ∑
K : ℓ(K)<1/Mor ℓ(K)>M

⟨
Tφ
ε2
(1, 1), hK

⟩⟨
f
⟩
K

⟨
g
⟩
K

⟨
h, hK

⟩∣∣∣
. ∥f∥L4∥g∥L4

( ∑
K : ℓ(K)<1/Mor ℓ(K)>M

∥∆Kh∥2L2

)1/2
= c(M),

where c(M) → 0 when M → ∞. This gives that∣∣∣∑
K

⟨
Tφ
ε2
(1, 1),hK

⟩⟨
f
⟩
K

⟨
g
⟩
K

⟨
h, hK

⟩∣∣∣
≤ c(M) +

∣∣∣ ∑
K : 1/M≤ℓ(K)≤M

⟨
Tφ
ε2
(1, 1), hK

⟩⟨
f
⟩
K

⟨
g
⟩
K

⟨
h, hK

⟩∣∣∣.
The latter sum is finite as h has compact support. Since

⟨
Tφ
ε2
(1, 1), hK

⟩
→ 0 when

ϵ2 → ∞, we have that

lim
ϵ2→∞

∣∣∣ ∑
K∈Dgood

⟨
Tφ
ε2
(1, 1), hK

⟩⟨
f
⟩
K

⟨
g
⟩
K

⟨
h, hK

⟩∣∣∣ ≤ c(M).

The claim follows by letting M → ∞.
We are done with the proof of Theorem 1.1.

5. SPARSE FORM DOMINATION FOR SHIFTS

Let us first introduce a general framework of trilinear forms. Let D be a fixed
dyadic grid on Rn and i, j, k be nonnegative integers. Define the trilinear form

Sρ(f1, f2, f3) :=
∑
Q∈D

SQ(f1, f2, f3)

:=
∑
Q∈D

˚
Q×Q×Q

KQ(x1, x2, x3)
3∏

j=1

fj(xj) dx1 dx2 dx3,

where ρ ≥ 0. Assume it satisfies the following:
A. The kernels KQ : Q×Q×Q → C satisfy ∥KQ∥L∞ ≤ |Q|−2.
B. There exist exponents p, q, r ∈ (1,∞) such that 1/p + 1/q = 1/r and a

constant B so that for every subcollection Q ⊂ D of dyadic cubes the
truncated form

Sρ
Q(f1, f2, f3) :=

∑
Q∈Q

SQ(f1, f2, f3).

satisfies
|Sρ

Q(f1, f2, f3)| ≤ B∥f1∥Lp∥f2∥Lq∥f3∥Lr′ .

C. KQ is constant on sets of the form Q1 ×Q2 ×Q3, where Q
(ρ+1)
i = Q.
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It can easily be seen that trilinear forms associated to both cancellative bilinear
shifts and paraproducts fall into the above class of forms. Corollary 1.2 follows
from Thereom 1.1 by using two results from this section, namely Proposition 5.1
and Corollary 5.8.

We state the next proposition for only dyadic grids without quadrants – these
are dyadic grids where every sequence of cubes Ik with Ik ( Ik+1 satisfy Rn =∪

k Ik. Since almost every dyadic grid has this property, this generality is already
enough for us to conclude everything we need. Of course, the proposition would
hold in every grid but since this is not needed, we prefer this technical simplifi-
cation.

5.1. Proposition. Let η ∈ (0, 1), D be a dyadic grid without quadrants and f1, f2, f3
be compactly supported and bounded functions. Then there exists an η-sparse collection
S = S(f1, f2, f3, η) ⊂ D, so that for all Sρ defined in D there holds

(5.2) Sρ(f1, f2, f3) .η (B + ρ)
∑
Q∈S

|Q|
3∏

j=1

⟨
|fj|
⟩
Q
=: (B + ρ)ΛS(f1, f2, f3).

Proof. Let Q0 ∈ D be so that it contains the supports of all of the three functions
fj . Define E to be the collection of maximal cubes Q ∈ D, Q ⊂ Q0, such that

max

( ⟨
|f1|
⟩
Q⟨

|f1|
⟩
Q0

,

⟨
|f2|
⟩
Q⟨

|f2|
⟩
Q0

,

⟨
|f3|
⟩
Q⟨

|f3|
⟩
Q0

)
> C0.

For C0 = C0(η) large enough there holds∑
Q∈E

|Q| ≤ (1− η)|Q0|.

The cube Q0 is the first cube to be included in S , and EQ0 := Q0 \
∪

Q∈E Q.
Let G = G(Q0) := {Q ∈ D : Q ⊂ Q0 and Q ̸⊂ Q′ for every Q′ ∈ E}, and for

Q ∈ D write D(Q) = {R ∈ D : R ⊂ Q}. Then we have the decomposition

Sρ(f1, f2, f3) =
∑
Q∈D
Q)Q0

SQ(f1, f2, f3) + Sρ
G(f1, f2, f3)

+
∑
Q∈E

Sρ
D(Q)(f11Q, f21Q, f31Q),

(5.3)

where we applied the fact that the functions are supported in Q0. The size prop-
erty ∥KQ∥L∞ ≤ |Q|−2 of the kernels implies that∣∣∣ ∑

Q∈D
Q)Q0

SQ(f1, f2, f3)
∣∣∣ ≤ ∑

Q∈D
Q)Q0

∥f1∥L1∥f2∥L1∥f3∥L1

|Q|2
∼ |Q0|

∏
j

⟨
|fj|
⟩
Q0
.
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We will prove the estimate

(5.4) Sρ
G(f1, f2, f3) .η (B + ρ)|Q0|

∏
j

⟨
|fj|
⟩
Q0
.

From (5.3) and (5.4) it is then seen that the collection S can be obtained by iter-
ating this process, in the second step beginning with Sρ

D(Q)(f11Q, f21Q, f31Q) for
some Q ∈ E . Hence, to conclude the proof, it remains to show (5.4).

We prove (5.4) by performing a Calderón-Zygmund decomposition to fj with
respect to the collection E , obtaining for each j = 1, 2, 3 that

fj = gj + bj := gj +
∑
Q∈E

bj,Q, bj,Q :=
(
fj −

⟨
fj
⟩
Q

)
1Q.

For every Q ∈ E there hold the standard properties

∥gj∥L∞ .η

⟨
|fj|
⟩
Q0
,

ˆ
Q

bj,Q = 0, ∥bj,Q∥L1 .η |Q|
⟨
|fj|
⟩
Q0
.

Decompose the left hand side of (5.4) into eight parts:

Sρ
G(g1, g2, g3), S

ρ
G(b1, b2, b3), S

ρ
G(g1, g2, b3), S

ρ
G(g1, b2, g3), · · ·

The part with three good functions can be directly estimated via the boundedness
of Sρ

G and the estimates ∥gj∥L∞ .η

⟨
|fj|
⟩
Q0

:

|Sρ
G(g1, g2, g3)| ≤ B∥g1∥Lp∥g2∥Lq∥g3∥Lr′ .η B|Q0|

∏
j

⟨
|fj|
⟩
Q0
.

In all the other parts, there is at least one bad function involved. All of these
terms vanish by assumption C if ρ = 0, so assume now that ρ ≥ 1. By symmetry
we consider a term of the form Sρ

G(b1, h2, h3), where hj can either be gj or bj . We
further decompose G into ρ subcollections each of which, denoted by G ′, satisfies
that ℓ(I1) ≥ 2ρℓ(I2) whenever I1, I2 ∈ G ′, I1 ) I2. It suffices to show that

(5.5) |Sρ
G′(b1, h2, h3)| .η |Q0|

∏
j

⟨
|fj|
⟩
Q0
.

Because of the assumption C, the defining property of G ′ and the fact that´
b1,Q = 0 for every Q ∈ E , we have that for every Q ∈ E there exists at most

one R ∈ G ′ such that Q ( R and SR(b1,Q, h2, h3) ̸= 0. If such a cube R exists we
denote it by R(Q). Therefore,

|Sρ
G′(b1, h2, h3)| ≤

∑
R∈G′

∑
Q∈E

R(Q)=R

|SR(b1,Q, h2, h3)|

≤
∑
R∈G′

∑
Q∈E

R(Q)=R

∥b1,Q∥L1∥h21R∥L1∥h31R∥L1

|R|2
,

(5.6)

where the size estimate ∥KR∥L∞ ≤ |R|−2 was applied.
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Let j = 2, 3 and fix some R ∈ G ′ for the moment. We will prove ∥hj1R∥L1 .η

|R|
⟨
|fj|
⟩
Q0

. The L∞ property of gj implies that ∥gj1R∥L1 .η |R|
⟨
|fj|
⟩
Q0
. The esti-

mates ∥bj,Q∥L1 .η |Q|
⟨
|fj|
⟩
Q0

give

∥bj1R∥L1 =
∑

Q∈E : Q⊂R

∥bj,Q∥L1 .η

∑
Q∈E : Q⊂R

|Q|
⟨
|fj|
⟩
Q0

≤ |R|
⟨
|fj|
⟩
Q0
.

Now we proceed from (5.6) as

|Sρ
G′(b1, h2, h3)| .η

∑
R∈G′

∑
Q∈E

R(Q)=R

∥b1,Q∥L1

⟨
|f2|
⟩
Q0

⟨
|f3|
⟩
Q0

.η |Q0|
⟨
|f1|
⟩
Q0

⟨
|f2|
⟩
Q0

⟨
|f3|
⟩
Q0
.

This completes the proof of (5.5), and hence the proof of the proposition. �
For clarity we give the proof of the following lemma – it is a simple argument

that can be extracted from the proof of Lemma 4.7 in Lacey–Mena [8].

5.7. Lemma. Let 0 < η1, η2 < ∞. Suppose D is a dyadic grid and f1, f2, f3 ∈ L1. Then
there is an η2-sparse family U = U(f1, f2, f3, η2) ⊂ D so that for all η1-sparse S ⊂ D
there holds that

ΛS(f1, f2, f3) .η1,η2 ΛU(f1, f2, f3).

Proof. We first construct the family U . Let C = C(η2) ≥ 8n be a large enough
constant depending on η2. For each k ∈ Z define

Uk =
{

maximal cubes Q ∈ D so that
∏
j

⟨
|fj|
⟩
Q
> Ck

}
.

Notice that if Q ∈ Uk then

Ck <
∏
j

⟨
|fj|
⟩
Q
≤ 8n

∏
j

⟨
|fj|
⟩
Q(1) ≤ 8nCk ≤ Ck+1.

This means that a given Q ∈ D can belong to at most one of the collections Uk.
Define

U =
∪
k∈Z

Uk.

Let us show that this is an η2-sparse collection. Let Q ∈ U and fix k so that Q ∈ Uk.
Notice first that ∣∣∣ ∪

R∈U
R(Q

R
∣∣∣ = ∣∣∣ ∪

R∈Uk+1

R⊂Q

R
∣∣∣ = ∑

R∈Uk+1

R⊂Q

|R|.

If R ∈ Uk+1 is such that R ⊂ Q, then∏
j

⟨
|fj|
⟩
R
> Ck+1 ≥ C

8n

∏
j

⟨
|fj|
⟩
Q
,



22 KANGWEI LI, HENRI MARTIKAINEN, YUMENG OU, AND EMIL VUORINEN

and so

max
j

⟨
|fj|
⟩
R⟨

|fj|
⟩
Q

>
C1/3

2n
.

This implies that ∣∣∣ ∪
R∈U
R(Q

R
∣∣∣ ≤ 3 · 2n

C1/3
|Q| ≤ (1− η2)|Q|

provided C = C(η2) is large enough. It is now clear that the sets

EQ := Q \
∪
R∈U
R(Q

R, Q ∈ U ,

are disjoint and satisfy |EQ| ≥ η2|Q|, which proves that U is η2-sparse.
Consider an arbitrary S ⊂ D, which is η1-sparse. If Q ∈ S satisfies

∏
j

⟨
|fj|
⟩
Q
̸=

0, then there is a cube R ∈ U so that Q ⊂ R. Let πUQ denote the minimal R ∈ U
so that Q ⊂ R. Suppose πUQ ∈ Uk. Then we cannot have

∏
j

⟨
|fj|
⟩
Q
> Ck+1 (as

otherwise πUQ would not be minimal), and so∏
j

⟨
|fj|
⟩
Q
≤ Ck+1 ≤ C

∏
j

⟨
|fj|
⟩
πUQ

.η2

∏
j

⟨
|fj|
⟩
πUQ

.

Finally, we get

ΛS(f1, f2, f3) =
∑
R∈U

∑
Q∈S

πUQ=R

|Q|
∏
j

⟨
|fj|
⟩
Q

.η2

∑
R∈U

∏
j

⟨
|fj|
⟩
R

∑
Q∈S
Qa=R

|Q|

.η1

∑
R∈U

|R|
∏
j

⟨
|fj|
⟩
R
= ΛU(f1, f2, f3).

�
5.8. Corollary. There exists dyadic grids Di, i = 1, . . . , 3n, with the following property.
Let η1, η2 ∈ (0, 1). Suppose f1, f2, f3 ∈ L1. Then for some i there exists an η2-sparse
collection U = U(f1, f2, f3, η2) ⊂ Di, so that for all η1-sparse collections of cubes S we
have

(5.9) ΛS(f1, f2, f3) .η1,η2 ΛU(f1, f2, f3).

Proof. We can let (Di)i be any collection of 3n dyadic grids with the property that
for any cube P ⊂ Rn there exists R ∈

∪
iDi so that P ⊂ R and ℓ(R) ≤ 6ℓ(P ). Then

it is easy to find a 6−nη1-sparse collections Si ⊂ Di (depending on S) so that

ΛS(f1, f2, f3) .η1

∑
i

ΛSi
(f1, f2, f3).
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Let Ui = Ui(f1, f2, f3, η2) ⊂ Di be the universal sparse collections given by Lemma
5.7. Then we have that

ΛS(f1, f2, f3) .η1

∑
i

ΛSi
(f1, f2, f3) .η1,η2

∑
i

ΛUi
(f1, f2, f3) . ΛUi0

(f1, f2, f3)

for some i0. We are done. �
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