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Abstract

Partial differential equations (PDEs) on surfaces appear in many applications throughout

the natural and applied sciences. The classical closest point method (Ruuth and Merriman,

J. Comput. Phys. 227(3):1943-1961, [2008]) is an embedding method for solving PDEs on

surfaces using standard finite difference schemes. In this paper, we formulate an explicit clos-

est point method using finite difference schemes derived from radial basis functions (RBF-

FD). Unlike the orthogonal gradients method (Piret, J. Comput. Phys. 231(14):4662-4675,

[2012]), our proposed method uses RBF centers on regular grid nodes. This formulation not

only reduces the computational cost but also avoids the ill-conditioning from point clustering

on the surface and is more natural to couple with a grid based manifold evolution algorithm

(Leung and Zhao, J. Comput. Phys. 228(8):2993-3024, [2009]). When compared to the

standard finite difference discretization of the closest point method, the proposed method

requires a smaller computational domain surrounding the surface, resulting in a decrease in

the number of sampling points on the surface. In addition, higher-order schemes can easily

be constructed by increasing the number of points in the RBF-FD stencil. Applications to

a variety of examples are provided to illustrate the numerical convergence of the method.
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1. Introduction

Many applications in the natural and applied sciences require the solution of partial dif-

ferential equations (PDEs) on surfaces. Image processing applications include the placement

of an image on a surface [1], the restoration of a damaged pattern on a surface [2] and the

segmentation and the denoising of images on surfaces [3, 4]. In biology, applications include

the formation of patterns on animal coats [5] and the wound healing process [6]. In computer

graphics, applications are found in the topic of real time fluid visualization on surfaces [7].

Various numerical methods have been developed to approximate the solution of PDEs on

surfaces. These include methods applied on parametrized surfaces, on triangulated surfaces

and on surfaces embedded in a higher dimensional space. Solution of PDEs on parametrized

surfaces can be efficient for surfaces where a parametrization is possible [8, 9], however a

parametrization of a surface often leads to distortions of the surface and singularities [9].

Triangulated surfaces avoid these issues. Finite difference methods can be applied to solve

PDEs on triangulated surfaces [1], but there are difficulties in the calculation of geometric

quantities, including the normal vector and the curvature of a surface [10]. On the other

hand, finite element methods on triangulated surfaces are effective in solving parabolic or

elliptic PDEs [11]. Methods using surfaces embedded into a d-dimensional space extend the

surface PDE in the embedding space and solve the extended PDE using standard Cartesian

methods.

A popular method employs a level set representation of surfaces and a projection operator

to solve surface PDEs [12, 13]. Typically, the computational domain consists of points in

a neighborhood of the surface. This may lead to the introduction of artificial boundary

conditions at the boundary of the computational domain which can degrade the accuracy

of the method [14]. Meshfree approximations using radial basis functions (RBFs) are also

becoming popular within the embedded surfaces class [15, 16].

The closest point method [17] is an embedding method which uses a closest point rep-

resentation of the surface to solve PDEs on surfaces. In the classical formulation [17, 18],

the discretization is carried out in a neighborhood of the surface using standard finite differ-
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ence schemes and barycentric Lagrangian interpolation. The implicit closest point method

was introduced in [19] to provide a stable approximation of the Laplace-Beltrami and other

higher-order surface differential operators. Application of the implicit closest point method

to the solution of eigenvalue problems appears in [20]. See also [21] for a study of the

theoretical foundation of the closest point method.

The extension via the closest point mapping is also used as part of the development

for other methods for solving surface PDEs. In [22], the author uses the closest point

mapping to derive an RBF method for solving surface PDEs. The method gives a high-

order approximation to the solutions of surface PDEs in a variety of examples. See also

[14] for a related RBF method that carries out a local approximation of surface differential

operators to solve PDEs on folded surfaces. In addition, the extension via the closest point

mapping is used in the computation of integrals over curves and surfaces [23] and in the

solution of PDEs on closed, smooth surfaces using volumetric variational principles [24].

In this paper, we propose a new method using a closest point representation of a sur-

face and finite difference stencils derived from radial basis functions (RBF-FD). Notably,

the use of RBF-FD leads to a method (RBF-CPM) that evaluates derivatives on the sur-

face, rather than in the embedding space. This eliminates the interpolation step in the

evaluation of derivatives, thereby eliminating a potential source of error and computational

cost. In addition, standard RBF-FD and global RBF methods for surface PDEs may suffer

ill-conditioning due to small separating distances in the surface points [25]. Our method

uses RBF-FD stencils on regular Cartesian grid nodes, thus allowing irregular collocation

points on the surface and avoiding the ill-conditioning that may arise due to point clustering

on the surface. Due to the regularity of the RBF-FD stencil, the collocation matrix asso-

ciated with the calculation of the RBF-FD weights is independent of the surface, and its

inverse can be accurately calculated locally. Due to repeated patterns on the RBF centers,

only a small number of collocation matrix inverses need to be calculated, thus reducing the

computational cost over existing RBF methods.

In our method, second-order accuracy in ∆x can be achieved with smaller computational

domains and fewer points on the surface relative to the classical closest point method.
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Furthermore, higher-order schemes are obtained simply by increasing the number of points

in the finite difference stencil.

The paper unfolds as follows. In Section 2, we review the classical closest point method

and RBF approximation. Section 3 gives our new method and studies the selection of

parameters and the computational domain. Section 4 considers the performance of the

method using a variety of convergence studies and numerical examples in two and three

dimensions. Finally Section 5 concludes and explores potential future work.

2. Numerical methods review

2.1. The closest point method

The classical closest point method [17] is a simple numerical method for approximating

the solution of PDEs on surfaces. In this section, we review the method and its components.

2.1.1. Surface representation

To begin, the closest point to the surface is defined:

Definition 1. Let Γ ⊂ Rd be a surface and z ∈ Ω ⊂ Rd be some point in the embedding

space Ω ⊃ Γ. Then,

cpΓ(z) = arg min
x∈Γ
‖x− z‖2

is the closest point of z to the surface Γ.

In a neighborhood of the surface, cpΓ will be Cp-smooth for a Cp+1-smooth surface Γ [21].

To discretize, a Cartesian grid is introduced in the embedding space, over a neighborhood

of the surface. Typically, this neighborhood includes all grid nodes whose Euclidean distance

to the surface is less than or equal to some constant γCPM . Following a common convention

(e.g., [26]), we refer to this localized computational domain as the computational tube, and

the corresponding radius γCPM as the computational tube radius. To avoid introducing

discontinuities into cpΓ, the computational tube radius should satisfy γCPM < κ−1
∞ , where

κ∞ is an upper bound on the curvatures of Γ [24]. The grid points and their closest points

together form a closest point representation of the surface Γ.

4



The method used to determine the closest point function depends on the type of surface

under consideration. For simple surfaces, such as the sphere and the torus, an analytical

formula for the closest point function is available, and the preferred approach is to simply

evaluate the formula. On the other hand, for ellipsoids, the Möbius strip, and many other

interesting shapes, the surface may be given in parameterized form. Here, standard numeri-

cal optimization techniques can be applied to find the closest point on the surface (cf. [27]).

Finally, we consider surfaces in triangulated form. In this case, we follow [18] and loop over

the list of triangles. For grid nodes near a triangle Ti (specifically, nodes that are within a

Euclidean distance γCPM of Ti), we compute and store the closest point on Ti. For each grid

node, the closest point over all stored possibilities is the closest point on the surface. See

[18] for further details on this procedure. Another approach which follows the causality of

the eikonal equation can also be applied [28].

2.1.2. The equivalence principles

In the closest point method, we do not solve the surface PDE problem on the surface

directly. Instead, we solve a suitable differential equation defined over the computational

domain. The key property of this differential equation (the embedding equation) is that its

solution on the surface must agree with the solution to the original surface PDE. Values off

the surface do not directly give the solution to the PDE-on-surface problem.

To form the embedding equation, surface derivatives are replaced with closest point

operators and standard Cartesian derivatives. The foundation of this procedure consists of

two principles [17, 29]: the equivalence of gradients and the equivalence of divergence.

Principle 1. Let v be any function on Rd that is constant along normal directions of Γ.

Then, at the surface, intrinsic gradients are equivalent to standard gradients, ∇Γv = ∇v.

Principle 2. Let v be any vector field on Rd that is tangent to Γ and tangent to all surfaces

displaced by a fixed distance from Γ. Then, at the surface, ∇Γ · v = ∇ · v.

General surface differential operators can be replaced with the corresponding Cartesian

differential operators by combining the two principles. Of particular interest to us is the
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composition of the divergence and gradient operators: Let u be any function on Rd that is

constant along normal directions of Γ. Then, on the surface, the Laplace-Beltrami operator

is equivalent to the standard Laplacian operator, ∆Γu = ∆u for all x ∈ Γ. This property

is referred to as the equivalence of the Laplacian. As a consequence, heat flow intrinsic to a

surface can be approximated by alternating constant-along-normal extension with standard

heat flow in the underlying embedding space. Other, similarly straightforward combinations

of the gradient and divergence principles lead to replacements for nonlinear diffusive flows

such as curvature motion intrinsic to a surface [17, 27]. Higher-order operators can also

be approximated in the embedding space, although additional extension operators may

be needed. See, for example, [19] where two extension operators are used as part of the

approximation of fourth-order operators.

2.1.3. The closest point method

Evolution of the embedding equation may be carried out in a similar fashion, to yield

the explicit closest point method [17]. Specifically, given a closest point representation of a

surface Γ, the explicit closest point method alternates between the following two steps:

1. Closest point extension. Carry out a constant-along-normal extension of u : Γ→ R

to yield ũ : Ω→ R by ũ(z) = u(cpΓ(z)) for each z in the tubular computational domain

Ω ⊃ Γ.

2. Evolution. The PDE is solved on the tubular computational domain Ω in the embed-

ding space for one time step (or one stage of a Runge-Kutta method).

Note that the closest point extension step is an interpolation step since cpΓ(z) is not

necessarily a grid point. In [17], barycentric Lagrange interpolation is used with polynomial

degree p = q + r − 1, where q is the order of finite differences schemes and r is the order

of the derivatives. Localization of the computation is accomplished by computing over a

computational tube surrounding the surface [17, 19]. For second-order finite differences and
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second-order derivatives, it is sufficient to choose a computational tube radius of γCPM where

γCPM =

√
(d− 1)

(
p+ 1

2

)2

+

(
1 +

p+ 1

2

)2

∆x (1)

in a d-dimensional embedding space [17].

2.2. Global Radial Basis Function (RBF) approximation

RBF approximation is a powerful tool for approximating smooth functions on a variety

of geometries. Following [30, 31], given an RBF φ(r) (see Table 1 for some RBF options)

and a set of scattered points Z = {zj}nZ
j=1 called RBF centers, the RBF interpolant has the

form

s(x) =

nZ∑
j=1

λjφ(‖x− zj‖) (2)

with coefficients λj. For the RBF interpolation of any smooth function v : Ω → R, the

coefficients λj can be found by interpolation conditions at Z ⊂ Ω, i.e. by solving the

symmetric linear system

A(Z,Z)λ = v(Z), (3)

for λ = [λj] ∈ RnZ×1, where v(Z) := [v(zj)] ∈ RnZ×1 and A(Z,Z) := [φ(‖zi−zj‖)] ∈ RnZ×nZ

for zi, zj ∈ Z in an orderly sense.

Then, we can use the interpolant to approximate the derivatives of v. If L is a differential

operator, then the quantity Lv at some point x can be approximated as

Lv(x) ≈ Ls(x) =

nZ∑
j=1

λjLφ(‖x− zj‖), (4)

in which L acts upon the variable x in the basis function φ. In matrix form, we can express

(4) as

Lv(x) ≈ B(x, Z)A(Z,Z)−1v(Z), (5)

where B(x, Z) = [Lφ(‖x − z1‖), . . . , Lφ(‖x − znZ
‖)] ∈ R1×nZ . This expression provides a

radial basis function pseudo-spectral method, which can be easily localized to give a RBF

finite difference discretization (RBF-FD) for the differential operator L evaluated at the
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Name of RBF Abbreviation Definition

Smooth RBFs

Gaussian GA φ(r) = e−(εr)2

Multiquadratic MQ φ(r) =
√

1 + (εr)2

Inverse multiquadratic IMQ φ(r) =
1√

1 + (εr)2

Inverse quadratic IQ φ(r) =
1

1 + (εr)2

Piecewise smooth RBFs

Cubic CU φ(r) = |r|3

Thin plate spline TPS φ(r) = r2 ln |r|

Table 1: Definition of some commonly used RBFs.

data site x ∈ Ω. Some compact RBF-FD stencils can be found in [32] for applications in

geosciences. Details on RBF-FD stencils that use a given number of nearest neighbors are

found in [33].

3. A closest point method for solving PDEs on surfaces using RBF-FD

In this section, we introduce an explicit RBF closest point method for solving PDEs

on surfaces. Our method uses RBF-FD stencils that consist of m closest neighboring grid

points. As part of our method, we provide an approach for the calculation of a computational

tube around the surface.

For illustration purposes, consider the heat equation

ut = ∆Γu (6)

intrinsic to a surface Γ, where u : Γ → R is a function defined solely on the surface. Using

a set of specially constructed surface data points X = {xj} ⊂ Γ, our aim is to design

an efficient, accurate, and robust finite difference scheme in order to spatially discretize
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equation (6), i.e.

[∆Γu](X) ≈ Wu(X),

where W is a differentiation matrix that takes the vector of function values u(X) :=

[u(xj)]xj∈X to the approximated values of ∆Γu at X.

In the literature, this can be done by the orthogonal gradients method [22] and projection

methods [15] using RBFs, in which the geometry of X plays a key role in the numerical

stability. In the orthogonal gradients method, the RBF centers Z = {zj} are constructed

by extending the surface points X in the embedding space in the normal direction. The

geometry of the surface Γ and the points X determine that of Z, which should ideally be

quasi-uniform. Projection methods work solely on X with the corresponding analysis carried

out in Sobolev spaces on Γ. Like other typical kernel approximation theories, convergence

comes when X gets dense, i.e. as the fill distance hX −→ 0. Both approaches involve solving

interpolation problems, whose conditioning depends on the minimum separating distance qX

of X [25]. Thus, it is common to require that the mesh ratio ρX := hX/qX ≥ 1 of the surface

points is bounded. In short, quasi-uniform points X need to be used on surfaces, which may

not be an easy task.

Finite difference schemes, on the other hand, work on regular grids with mesh ratio

exactly equal to 1. Yet, extra work is required to apply finite differences to surfaces in

general (e.g., the original closest point method [17]). We propose a new RBF kernel based

formulation to get the best of both worlds.

3.1. Description of the method

We start with a collection of Cartesian grid points Z = {zj}nZ
j=1 ⊂ Ω on a small tubular

domain containing the surface Γ. Then, we define surface data points via xj = cpΓ(zj) to

form a set X = {xj}nZ
j=1 ⊂ Γ; see Figure 1 for a schematic demonstration. Applying the

equivalence of the Laplacian property yields the relation

∆Γu(X) = ∆ũ(X),
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which holds for any X ⊂ Γ, and where we denote the constant-along-normal extension of u

by ũ : Ω→ R.

We now deploy the methodology locally to obtain an RBF-FD approximation. For each

surface point xj = cpΓ(zj) for some zj ∈ Z and j = 1, . . . , nZ , let Zj = {zj1 , . . . , zjm} ⊂ Z

denote the m nearest neighborhood of xj. Locally, we take the xj–local interpolant of ũ

using basis function φ at centers Zj, denoted by sj below, as the function v in Section 2.2.

Then, (5) gives an approximation scheme

∆ũ(xj) ≈ ∆sj(xj)

= B(xj, Zj)A(Zj, Zj)
−1ũ(Zj)

=: wjũ(Zj).

In other words, the nonzero RBF-FD weight wj ∈ R1×m is given as the product of a row

vector B(xj, Zj) = [∆φ(‖xj − zj1‖), . . . ,∆φ(‖xj − zjm‖)] ∈ R1×m and the inverse matrix of

A(Zj, Zj) = [φ(‖zjk − zj`‖)] ∈ Rm×m for zjk , zj` ∈ Zj. Using wj for j = 1, . . . , nZ , we can

assemble the RBF-FD matrix W such that

∆Γu(X) = ∆ũ(X) ≈ Wũ(Z). (7)

In addition, we also construct an RBF-FD projection matrix P such that

u(X) = ũ(X) ≈ Pũ(Z), (8)

simply by replacing ∆ with the identity map in the computation. The matrix P will appear

later as part of our time-stepping scheme.

Note that all approximations are done in the embedding space, which is independent

of the geometry of X. By using a regular Z, we obtain collocation matrices A(Zj, Zj)

that depend on the geometry of Zj, but are independent of the surface Γ. Thus, we can

precompute all A(Zj, Zj)
−1, and the evaluation of each RBF-FD weight requires only matrix-

vector multiplications. As a consequence, we can employ accurate and expensive solvers to

compute the A(Zj, Zj)
−1 matrices without harming the overall performance of the proposed
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method. This greatly improves computational efficiency over the existing methods in which

no matrix inverse can be reused due to the lack of repeated pattern in data point geometry.

The RBF finite difference stencil used in this paper consists of the m closest grid points

Zj, to each surface point xj. Methods that use RBF-FD stencils of a given number of nearest

neighbors on scattered nodes require the use of quasi-uniform nodes on the surface [16]. By

using RBF-FD stencils on the grid nodes, we avoid the ill-conditioning of the RBF-FD

matrices that arises from the clustering of nodes on the surface. Figure 1 shows an example

of an RBF-FD stencil that consists of the m = 13 closest grid points to a particular surface

point (displayed using a squared red dot).

Figure 1: Left: The closest points (red dots) to the grid points in the computational domain (blue dots) on

the surface. Right: An example of a m = 13 point stencil (circled blue dots) for a surface point (squared

red dot).

We are now ready to temporally discretize the heat equation

ut = ∆Γu

intrinsic to the surface Γ. Using the forward Euler scheme with spatial discretization at

X ⊂ Γ as above, we have

u(X, tn+1) = u(X, tn) + ∆t∆Γu(X, tn) +O(∆t2), (9)
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for tn = n∆t. Recall that in our proposed setup Z ∈ Ω is regular, whereas X = cpΓ(Z)

could be highly nonuniform. It is desirable to work on the Z nodes.

Let Ũn
Z be the approximated values of ũ(·, tn) on Z and at time tn. This time-stepping

scheme is initialized using the initial condition Ũ0
Z := ũ(Z, 0) = u(X, 0). It is equivalent

to consider the discrete equation of the constant-along-normal extended function, and (9)

becomes

u(X, tn+1) = ũ(X, tn) + ∆t∆ũ(X, tn) +O(∆t2), n ∈ N. (10)

We use (7) and (8) to approximate the right hand side from the stored approximated solution

values Ũn
Z ≈ ũ(Z, tn). Note that we do not use pointwise projection, i.e., ũ(X, tn) ≈ Ũn

Z ,

because Ũn
Z contains discretization and approximation errors. Using (8) to approximate

ũ(X, tn) introduces some averaging into the approximation and increases numerical stability.

Indeed, Figure 2 shows the eigenvalues of the discretization of equation (10) on the unit

circle for m = 13 points, a grid size of ∆x = 0.025 and a time step-size of ∆t = 10−6. The

scheme that uses pointwise projection leads to an unstable system (eigenvalues larger than

1) whereas a stable approximation can be achieved using the projection operator.

By design, we have u(X, tn+1) = ũ(Z, tn+1), whose approximated values will be used to

define Ũn+1
Z . With all of the above considered, the approximate solution can be updated

from time tn to tn+1 by

Ũn+1
Z := (P + ∆tW )Ũn

Z , n ∈ N. (11)

In (11), the exterior Z nodes are also used implicitly in the construction of RBF-FD matrices

P and W defined in (7) and (8) as RBF centers. In other words, the proposed RBF-CPM

runs solely based on RBF interpolations with the regularly placed Z nodes. To evaluate the

numerical approximation, say at X ∈ Γ for simplicity, one can evaluate u(X, tn) ≈ PŨn
Z .

Other time-stepping schemes are also possible. In our experiments, we use the third-order,

three-stage SSP Runge-Kutta scheme [34] in advection-dominant problems due to its good

linear stability along the imaginary axis. For simplicity, and to differentiate from other

methods, we shall refer to our RBF discretization as the RBF-CPM.
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Figure 2: The eigenvalues of the discretization of the heat equation using forward Euler in time with

∆t = 10−6, a grid size of ∆x = 0.025 and m = 13 points in the RBF-FD stencil. Left: The eigenvalues

using the discretization I+dtW , where I is the identity matrix and W is the discretization of the Laplacian.

Right: The eigenvalues using the discretization P + dtW , where P is the projection matrix and W is the

discretization of the Laplacian.

Given a collection of Cartesian grid points Z = {zj}nZ
j=1 in a small tubular domain Ω that

contains the surface Γ, the algorithm of the RBF-CPM for a time dependent PDE consists

of the following steps:

1. Compute the set of surface points X = {xj}nZ
j=1 ∈ Γ via the closest point representation

of the surface Γ: xj = cpΓ(zj), for zj ∈ Z, j = 1, . . . , nZ .

2. Compute the RBF-FD matrices, i.e. the matrices P and W in (7)-(8). For each surface

point xj, j = 1, 2, . . . , nZ :

(a) Find the m closest grid points Zj = {zji}mi=1 to xj.

(b) Compute the RBF-FD weight wj at the surface node xj.

3. Solve the surface PDE using an explicit time-stepping scheme, e.g. (11), until the final

time.

Our method allows pre-computation for solving local linear systems; provided that two

local neighborhoods Zi and Zj share the same geometrical arrangement, the corresponding
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interpolation matrices are identical, i.e, A(Zi, Zi) = A(Zj, Zj). Therefore, an expensive but

accurate method can be used.

3.2. Parameters

The convergence order of the RBF-FD schemes is limited by the smoothness of the

employed kernel and the geometry of the RBF centers [35]. In this paper, we employ

Gaussian RBFs so that the smoothness of the kernel will not be a limiting factor. To avoid

any potential problem of ill-conditioning, we use the stable RBF-GA method which provides

an accurate and stable algorithm and is a cheaper stabilization method over RBF-QR [36].

These stabilization techniques are independent of the condition number of the matrix A (see

Section 3.1) using a direct calculation using Gaussian RBFs [36, 37].

There are two parameters appearing in the RBF-CPM. These are the shape parameter

ε of the Gaussian RBFs and the number of points m in the stencil used locally for the RBF

interpolation. While this section considers the dependence of the numerical method on both

parameters, our emphasis will be on the number of points m. The parameter ε was found

to have little effect on our results.

We consider two test problems to measure the error of the discrete Laplace-Beltrami

operator in comparison to the exact. The first test problem (P1) approximates the Laplace-

Beltrami operator applied to the function u(θ) = sin(θ) on the unit circle. The relative error

in this problem can computed using the known, exact solution ∆Γu = −u. In our second

problem (P2), the Laplace-Beltrami operator is applied to the function u(θ, φ) = sin(φ) on

the unit sphere Γ

Γ =
{

x : x(θ, φ) = (cos(θ) cos(φ), sin(θ) cos(φ), sin(φ)),−π ≤ θ < π,−π
2
≤ φ ≤ π

2

}
.

Here, the relative error can be computed using the known, exact solution ∆Γu = −2u.

We apply the RBF-FD method in Equation (7) to test problems P1 and P2 for various

mesh spacings and selected m-values. See Figure 3 for the corresponding max norm relative

errors. We find that the observed order of the method increases as the number of points

in the finite difference stencil increases. Due to the regularity of the grid spacing, and
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Figure 3: Relative error as a function of grid spacing ∆x for various stencils for the approximation of the

Laplace-Beltrami operator. Left: problem P1 (two dimensions). Right: problem P2 (three dimensions). All

experiments use ε = 1.

the smoothness of the kernel, our choice of parameter ε has little effect on the results. In

particular, the observed orders of convergence for ε = 1, ε = 0.1 and ε = 0.001 are the

same for problems P1 and P2. For this reason, we simply choose ε = 1 in the numerical

experiments presented in Section 4.

3.3. Computational tube

The RBF-FD stencils used in the RBF-CPM, i.e., Zj ⊂ Z for j = 1, . . . , nZ , are formed

using the m-nearest neighboring regular grid points with a predetermined spacing ∆x. For

such problems, the matrix-based formulation of the closest point method [19] can be used to

obtain the minimal-sized computational tube. In this paper, we can take a simpler approach

to identify the computational tube by identifying a sufficiently large tube radius γ.

Consider the Gauss circle problem [38]. In its standard form, it is posed as follows: Find

the number of integer lattice points m inside a circle with radius r centered at the origin. We

shall consider a related formulation: Find the number of ordered pairs (x, y), with integers

x, y ≥ 0, such that

x2 + y2 ≤ q

where the radius of the circle is chosen as r =
√
q, for a fixed integer q ≥ 0. Generalizations
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to higher dimensions are also available. In three dimensions, the problem uses a sphere

centered at the origin. In this case, we find the number of ordered triplets (x, y, z), with

integers x, y, z ≥ 0, such that

x2 + y2 + z2 ≤ q

where the radius of the sphere is r =
√
q, for an integer q ≥ 0.

The integer solutions of the Gauss circle problem and its generalization to three di-

mensions are given by sequences A057655 (two dimensions) and sequences A117609 (three

dimensions) in the On-Line Encyclopedia of Integer Sequences [39]. Table 2 shows some of

the integer solutions for the Gauss circle problem in two and three dimensions.

q m (2D) m (3D)

0 1 1

1 5 7

2 9 19

3 9 27

4 13 33

5 21 57

Table 2: The number of lattice points m contained in a ball with radius r =
√
q in two and three dimensions.

For a stencil that uses the m closest grid nodes to a surface point, a circle can be

constructed centered at the surface point that contains these m grid nodes. In order to

construct a computational tube around the surface using the Gauss circle problem, we need

to find a sufficiently large circle independent of the position of the surface point relative to

the surrounding grid nodes. In the optimal case, the surface point lies on a grid node; see

Figure 4 (left). In such an occurrence, the Gauss circle problem can be applied directly,

scaled properly with the grid size ∆x. Otherwise, the surface point does not lie on a grid

node. In order to use the Gauss circle problem, the distance between the surface point and

its closest grid node needs to be added to the radius r of the Gauss circle problem. The worst

case appears in Figure 4, where the surface point lies midway between all four surrounding
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grid nodes.

Figure 4: Two cases of a surface point (black x) placement in a mesh grid (blue dots).

To guarantee a sufficiently large circle/sphere radius, we must allow for the worst case.

This leads to a relation between the computational tube radius γ (corresponding to the

circle/sphere radius r) and the number of points m in the RBF-FD stencil; see Table 3.

γ (2D) m (2D) γ (3D) m (3D)

(
√

2 +
√

2/2)∆x 9 (
√

3 +
√

3/2)∆x 27

(2+
√

2/2)∆x 13 (2+
√

3/2)∆x 33

(
√

5 +
√

2/2)∆x 21 (
√

5 +
√

3/2)∆x 57

(
√

8 +
√

2/2)∆x 25 (
√

6 +
√

3/2)∆x 81

(
√

8 +
√

3/2)∆x 93

Table 3: Computational tube radius γ for an m-point RBF-FD stencil in two and three dimensions.

4. Numerical experiments

In this section, we test our method, the RBF-CPM, on a number of examples in two

and three dimensions. For problems involving the Laplace-Beltrami operator, we choose

m = 13 in two dimensions and m = 57 in three dimensions, which provides a second order

approximation for smooth solutions (cf. Figure 3). The radius of the computational tube is

set according to the values specified in Table 3. Finding the optimal RBF shape parameter

is out of the scope of this paper, and thus we set ε = 1 (unscaled Gaussian RBFs are used).
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Unless stated otherwise, forward Euler with a time step-size ∆t = 0.1∆x2 is used for the

discretization of the time derivatives.

4.1. Examples in two dimensions

First, we perform numerical experiments for applications in two dimensions to test the

convergence of the proposed method.

4.1.1. Heat equation on a circle

In our first experiment, we consider the heat equation

ut = ∆Γu

intrinsic to the unit circle Γ. Following [17], for an initial profile u(θ, 0) = sin θ, the exact

solution is

u(θ, t) = e−t sin θ.

Using an analytic closest point representation of the unit circle, the surface heat equation is

discretized and solved using Equation (11). Table 4 shows the relative errors as well as the

convergence rates for different grid sizes ∆x and number of points N on the computational

domain. The convergence rate here appears to be at least second-order. Using the original

closest point method, the number of points in the computational tube that are required for

a second order approximation with ∆x = 0.00625 is 7276, whereas our method uses 5464

points. This corresponds to a reduction of 25%.

4.1.2. Heat equation on a semicircle

Next, we consider the surface heat equation on the unit semicircle with homogeneous

Dirichlet boundary conditions. Given an initial profile u(θ, 0) = sin θ, the exact solution is

u(θ, t) = e−t sin θ.

Following [20], we introduce a modified closest point mapping cpΓ(z) = cpΓ(2cpΓ(z) − z)

which equals cpΓ(z) for points z that map to the interior of the semi-circle. Grid nodes that
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∆x N Rel. error (t = 1) Conv. rates

0.2 172 7.15×10−3 -

0.1 336 1.22×10−3 2.55

0.05 688 2.23×10−4 2.46

0.025 1376 5.15×10−5 2.11

0.0125 2708 1.35×10−5 1.93

0.00625 5464 3.15×10−6 2.10

Table 4: Relative errors and convergences rates for the approximate solution at time t = 1 for the heat

equation on the unit circle. Errors are measured in the infinity norm.

satisfy cpΓ(z) 6= cpΓ(z) are called ghost points zg. At such points, the function u is extended

by −u(cpΓ(zg)). Figure 5 shows the computational tube used in this example.

Table 5 presents the relative errors as well as the convergence rates for different grid

sizes ∆x and number of points N on the computational domain. Second-order convergence is

observed. Using the original closest point method, the number of points in the computational

tube that are required for a second order approximation at ∆x = 0.00625 is 3682, whereas

the RBF-CPM uses 2756 points.

∆x N Rel. error (t = 1) Conv. rates

0.2 110 7.38×10−3 -

0.1 192 1.14×10−3 2.69

0.05 368 2.12×10−4 2.43

0.025 712 5.02×10−5 2.08

0.0125 1378 1.34×10−5 1.91

0.00625 2756 3.13×10−6 2.09

Table 5: Relative errors and convergence rates for the approximate solution at time t = 1 for the heat

equation on the unit semicircle. Errors are measured in the infinity norm.
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Figure 5: The computational tube around the semicircle, including internal grid points (blue dots) and ghost

points (black dots), along with their corresponding closest points on the semicircle (red dots).

4.1.3. Advection equation on an ellipse

The next example is the advection equation on an ellipse. Following [17], the equation

ut + us = 0,

with s being the arclength, is imposed on an ellipse with major axis b = 1.25 along the

y-axis and minor axis a = 0.75 along the x-axis. By [17], application of the closest point

principles to the surface PDE leads to the embedding PDE

ut + T(x, y) · ∇u = 0

with

T(x, y) =
(−y/b2, x/a2)√
y2/b4 + x2/a4

.

For an initial profile u(s, 0) = sin3(2πs/L), the exact solution for subsequent times t ≥ 0 is

u(s, t) = sin3(2π(s− t)/L),

where L is the length of the perimeter of the ellipse. Using a parametrization for the

ellipse, the closest point representation is calculated via optimization techniques. Due to

the generic centered nature of the RBF-FD stencils used for approximating the first-order
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derivatives, the TVD-RK3 scheme [40] is chosen for the time discretization with a time step-

size ∆t = 0.5∆x. In this example, the computational tube radius is γ = (
√

2+
√

2/2)∆x with

m = 9 points in the finite difference stencil. Table 6 shows the error at the final time t = 1

and the estimated order of convergence of the method for various grid spacings and number

of points in the computational domain. Second-order convergence is observed. The number

of points in the computational tube that are required for a second order approximation at

∆x = 0.00625 using the original closest point method is 7276. Our method uses 41% fewer

points.

∆x N Rel. error (t = 1) Conv. rates

0.2 136 8.99×10−2 -

0.1 272 9.80×10−3 3.20

0.05 552 2.25×10−3 2.12

0.025 1080 5.59×10−4 2.01

0.0125 2168 1.40×10−4 2.00

0.00625 4332 3.51×10−5 1.99

0.003125 8652 8.75×10−6 2.00

Table 6: Relative errors and convergences rates for the approximate solution at time t = 1 for the advection

equation on an ellipse. Errors are measured in the infinity norm.

4.1.4. Advection-diffusion equation on an ellipse

Our next example considers advection-diffusion on an ellipse. The equation

ut + us = uss,

with s being the arclength, is imposed on an ellipse with major axis b = 1.25 (along the y-

axis) and minor axis a = 0.75 (along the x-axis). Similar to the previous example, application

of the closest point principles to the surface PDE gives

ut + T(x, y) · ∇u = ∆u
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with

T(x, y) =
(−y/b2, x/a2)√
y2/b4 + x2/a4

.

For an initial profile u(s, 0) = sin(2πs/L), the exact solution has the form

u(s, t) = e−2πt/L sin(2π(s− t)/L),

where L is the length of the perimeter of the ellipse. Table 7 shows the relative error of the

approximate solution compared to the exact as well as the estimated order of convergence.

Second-order convergence is observed.

∆x N Rel. error (t = 1) Conv. rates

0.2 172 9.66×10−3 -

0.1 348 1.34×10−3 2.85

0.05 692 4.88×10−4 1.46

0.025 1384 1.25×10−4 1.97

0.0125 2792 2.72×10−5 2.20

0.00625 5552 6.86×10−6 1.99

0.003125 11100 1.68×10−6 2.03

Table 7: Relative errors and convergence rates for the approximate solution at time t = 1 for the advection-

diffusion equation on an ellipse. Errors are measured in the infinity norm.

4.2. Examples in three dimensions

Next, we apply our proposed method to examples in three dimensions.

4.2.1. Heat equation on a sphere

For our first three dimensional example, consider the heat equation

ut = ∆Γu

on the unit sphere Γ. For an initial profile u(θ, φ, 0) = sinφ, the exact solution for all times

t is

u(θ, φ, t) = e−2t sinφ.
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An analytic closest point representation of the unit sphere is used and the surface heat

equation is discretized and solved using Equation (11). Table 8 shows the relative errors

as well as the convergence rates for different grid sizes ∆x and number of points N in

the computational tube. Second-order convergence is observed. Using ∆x = 0.0125 and

a second order finite difference discretization in the original closest point method leads to

663880 points in the computational domain, while the RBF-CPM uses 498392 points. This

corresponds to a reduction of 25%.

∆x N Rel. error (t = 1) Conv. rates

0.2 2240 8.18×10−3 -

0.1 8072 2.21×10−3 1.89

0.05 31416 5.42×10−4 2.03

0.025 125216 1.36×10−4 1.99

0.0125 498392 3.40×10−5 2.00

Table 8: Relative errors and convergence rates for the approximate solution at time t = 1 for the heat

equation on the unit sphere. Errors are measured in the infinity norm.

4.2.2. Advection on a torus

In this example, the solution of the advection equation on a torus is approximated.

Following [12], for a torus defined as

Γ =
{
x : x(φ, θ) =

((1

2
cos(φ) + 1

)
cos(θ),

(1

2
cos(φ) + 1

)
sin(θ),

1

2
sin(φ)

)
,−π ≤ θ, φ ≤ π

}
,

the advection equation is given by

ut + uφ = 0.

For an initial profile

u(φ, θ, 0) = f(φ) =

 g(φ+π
π ), −π ≤ φ ≤ 0,

g(π−φπ ), 0 < φ < π,

where

g(s) =
e1/(s−1) − e−1/s

e−1/s + e1/(s−1)
,
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the exact solution at time t is

u(φ, θ, t) = f(φ− t).

∆x N Rel. error (t = 1) Conv. rates

0.1 11392 1.76×10−2 -

0.05 45464 2.99×10−3 2.56

0.025 181480 4.88×10−4 2.62

0.0125 725200 9.52×10−5 2.36

0.00625 2901248 1.80×10−5 2.40

Table 9: Relative error and convergence rates for the approximate solution at time t = 1 for the advection

equation on a torus. Errors are measured in the infinity norm.

In this example, an analytic closest point representation of the torus is used. The computational

tube radius is γ = (2+
√

3/2)∆x and a stencil with m = 33 points is chosen. The stable TVD-RK3

scheme is chosen for the discretization in time with step-size ∆t = 0.5∆x. Table 9 shows the

error and the convergence rate of the method for various grid sizes ∆x. Convergence is at least

second-order. The number of points in the computational tube that are required for a second order

approximation at ∆x = 0.00625 using the original closest point method is 4163904. Our method

uses 30% fewer points.

4.2.3. Image denoising on a sphere

Our next example concerns image denoising for a textured image on the unit sphere. Following

[4], we apply the Perona-Malik model to denoise surface images. The equation has the form

ut = ∇Γ · (g(|∇Γu|)∇Γu)

where g is the diffusion coefficient given by

g(s) =
1

1 + (s/λ)2

and λ is a coefficient. The parameter λ and the final time t of the computation control the denoising

of an image.

To construct the initial image, we add Gaussian noise (zero mean and 0.2 standard deviation)

to the image of two birds. The noisy image is scaled to the interval [0, 1]. Figure 6 shows the results
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Figure 6: The initial image (top) is warped onto a sphere and Gaussian noise is added. The noisy image

(left) and the denoised image (right) are shown after 120 iterations on 1280598 points.
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after denoising the image using λ = 5 and 120 time steps with ∆t = 0.2∆x2 and ∆x = 0.005. We

find this choice for the parameter λ is sufficiently small to preserve edges in the denoised image.

In this example, the computational tube radius is chosen to be γ = (2 +
√

3/2)∆x with m = 33

points in the stencil. The number of points in the image is 1280598.

4.2.4. Reaction-diffusion systems

Our final example evolves the Gray-Scott reaction-diffusion model [41] on a triangulated surface.

The Gray Scott model describes the chemical reaction

U + 2V −→ 3V,

V −→ P,

where U , V and P are chemicals. The corresponding surface model has the form

ut = F (1− u)− uv2 +Du∆Su

vt = −(F + k)v + uv2 +Dv∆Sv

where u, v are the concentrations of the chemicals, Du, Dv are the diffusion rates, k is the conversion

rate from V to P and F is the feed rate of U .

For parameter choices of Du = 5×10−5 and Dv = 2.5×10−5, a variety of patterns are observed

as F and k are varied. Figure 7 shows two of these patterns on the surface of the Stanford Bunny

[42]. The closest point representation to the triangulated surface is calculated according to the

method described in Section 2.1.1. In this example, the final time is 15000 and the time step-size

is ∆t = (0.1/Du)∆x2 for a spatial grid size of ∆x = 0.025. See Figure 7 for patterns arising for

two different choices of the parameters F and k [43].

5. Summary

In this paper, an explicit closest point method is introduced that uses finite differences derived

from radial basis functions (RBF-FD). In our method, an RBF-FD approximation of surface deriva-

tives is formed using the m grid points closest to a surface point. Localization of the computation

is accomplished by computing over a tube whose radius is obtained from the solution to the Gauss

circle problem. An advantage of our algorithm relative to the standard finite difference CPM is
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Figure 7: The solution of the Gray-Scott reaction-diffusion model for parameters (k, F ) = (0.062, 0.03) (left)

and (k, F ) = (0.06, 0.037) (right).

a reduction of the computational tube radius, leading to the reduction of the grid points in the

computational domain and their corresponding closest points on the surface. Also, higher-order

schemes are easily constructed by increasing the number of points in the finite difference stencil.

When compared to RBF methods, our algorithm does not require quasi-uniform distribution of

points on the surface. In addition, the repeated patterns in our computational geometry allows

us to use an algorithm to invert (a small number of) collocation matrices, thereby reducing com-

putational cost over other existing methods. Numerical experiments are provided to validate the

method for different types of PDEs on surfaces.

The RBF-FD discretization introduced in this paper solves surface PDEs using explicit time

stepping methods. Implicit RBF-FD schemes which allow for large time steps for stiff problems

are also needed, and are a focus of our current work. Related to this, the approximation of the

eigenvalues of surface operators using the RBF-CPM method is particularly interesting (cf. [20]).

Another focus of our work is the solution of PDEs on moving surfaces. In moving closest point

representations, grid node deactivation may occur [26]. Methods based on RBF-FD discretizations

accommodate irregular stencils and are therefore particularly attractive for such problems. For a

discussion on the issue of grid node deactivation, and an initial method using the original closest

point method, see [44].
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