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Abstract

During the last decades several learning algorithms have been proposed to learn probability dis-
tributions based on decomposable models. Some of these algorithms can be used to search for a
maximum likelihood decomposable model with a given maximum clique size, k. Unfortunately,
the problem of learning a maximum likelihood decomposable model given a maximum clique
size is NP-hard for k > 2. In this work, we propose the fractal tree family of algorithms which
approximates this problem with a computational complexity of O(k2 · n2 ·N) in the worst case,
where n is the number of implied random variables and N is the size of the training set.

The fractal tree algorithms construct a sequence of maximal i-order decomposable graphs,
for i = 2, ..., k, in k − 1 steps. At each step, the algorithms follow a divide-and-conquer strat-
egy that decomposes the problem into a set of separator problems. Each separator problem is
efficiently solved using the generalized Chow-Liu algorithm. Fractal trees can be considered a
natural extension of the Chow-Liu algorithm, from k = 2 to arbitrary values of k, and they have
shown a competitive behavior to deal with the maximum likelihood problem. Due to their com-
petitive behavior, their low computational complexity and their modularity, which allow them to
implement different parallelization strategies, the proposed procedures are especially advisable
for modeling high dimensional domains.

Keywords: Approximating probability distributions, learning decomposable models, bounded
clique size, maximum likelihood problem, the Chow-Liu algorithm.

1. Introduction

In order to deal with some Statistical and Artificial Intelligence problems, a probability distri-
bution is required. In many of these problems the probability distribution is not explicitly given
and only a set of independent samples, distributed according to it, is available. When a suffi-
ciently large set of samples is accessible, we can approximate the probability distribution using
the empirical joint distribution. However, the number of samples required to obtain a reliable
estimation of the joint distribution grows exponentially with the number of the implied random
variables. In order to learn robust probabilistic models from the available data, the joint distri-
bution is approximated using a product of functions with a smaller number of parameters, e.g.,
marginal probability distributions. These models are usually learned from data by means of a
learning algorithm. From a practical point of view, it is desirable to develop learning algorithms
with a low computational complexity in order to deal with high dimensional domains. In addi-
tion, the algorithms should learn probabilistic models with a low tree-width that allow to perform
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probabilistic inference tasks efficiently. During the last decades, probabilistic graphical models
have provided one of the most effective tools for the automatic learning of probabilistic models
(Pearl, 1988), the family of decomposable models being one of the most attractive due to their
advantageous theoretical properties (Lauritzen, 1996). In this work, we propose a set of efficient
algorithms for learning decomposable models.

The approaches for learning factorized models of the joint distribution from data can be di-
vided into qualitative and quantitative algorithms. The qualitative approaches guide the search
of the structure of the factorization using (conditional) independence testing procedures, while
the quantitative approaches try to maximize a score related to the goodness of the approxima-
tion. Quantitative approaches are usually based on decomposable scores such as log likelihood,
Bayesian Dirichlet equivalent metric, minimum description length or Bayesian information cri-
terion (Koller and Friedman, 2009), among others. Our contributions consist of quantitative
algorithms based on the maximization of the likelihood score.

The likelihood score quantifies the chance of observing a set of samples under the hypoth-
esis that they are distributed according to a given probability model. It can be also interpreted
as the degree of fitness of the model to the available data. Likelihood is directly related with
the Kullback-Leibler divergence between the factorization and the empirical distribution1. It is
known that the likelihood of a model tends to be higher as its complexity increases, because
the fitting ability tends to increase with the number of free parameters. However, the risk of
overfitting increases with the complexity of the model, which can lead to models with a poor
generalization capability. Other scores, such as minimum description length, can be seen as a
penalized version of the likelihood. The penalized scores can be interpreted as a trade-off be-
tween the degree of fitness to the available data and the complexity of the model. Since the
likelihood does not penalize the complexity of the model, an explicit control of the complexity
of the model is required to avoid the overfitting phenomenon. In the proposed algorithms, the
complexity of the learned models is controlled by means of a single regularization parameter, k,
which determines the maximum clique size and, hence, the number of parameters of the learned
model. Additionally, the regularization parameter effectively controls the computational com-
plexity required to perform inference tasks since this is exponential in the maximum clique size
for decomposable models. This work is focused on learning maximal k-order decomposable
graphs (MkDG, see Definition 5), also known as (k − 1)-hypertrees (Srebro, 2000), because
they are the graphical support of the decomposable models that maximize the likelihood with a
maximum clique size of k (Malvestuto, 1991).

One of the most popular quantitative approaches based on the likelihood score for learn-
ing probability distributions with a low number of parameters is the Chow-Liu algorithm (CL)
(Chow and Liu, 1968). CL finds a maximum likelihood probability model among the (possible)
huge space of nn−2 candidate models with a tree structure. Additionally, it has been proven that
the algorithm is asymptotically consistent (Chow and Wagner, 1971). An efficient implementa-
tion of the algorithm is based on Prim’s algorithm with adjacency lists for maximization, where
the weights of the edges correspond to the empirical mutual information between the implied ran-
dom variables. Given the required weights, it has a computational complexity of O(n2), where
n is the number of implied random variables. Thus, due to its low computational complexity,
the huge number of candidate models that can be attained and its optimality, the algorithm is an
excellent building block for designing novel search strategies focused on the maximization of the
likelihood.

1i.e., the higher the likelihood, the lower the Kullback-Leibler divergence
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As we noted before, decomposable models are a popular class of probabilistic models due
to their theoretical properties. Among these properties, we highlight the closed form of the
maximum likelihood parameters, the interpretation of the models in terms of conditional inde-
pendences using a graphical criterion, and that they are the basis of the most popular inference
algorithms over probability distributions (Lauritzen, 1996).

1.1. Related work
During the last decades, many quantitative algorithms have been proposed in order to learn

decomposable models (Malvestuto, 1991; Srebro, 2000; Bach and Jordan, 2001; Desphande
et al., 2001; Karger and Srebro, 2001; Ding et al., 2007; Srebro, 2003; Chechetka and Guestrin,
2008; Kovács and Szántai, 2010; Szántai and Kovács, 2011; Malvestuto, 2012; Szántai and
Kovács, 2012; Corander et al., 2013; Proulx and Zhang, 2014; Kangas et al., 2014). We would
like to emphasize the seminal work of Malvestuto (1991), which establishes the basis for learning
decomposable models by means of greedy procedures. This work provides much of the theoreti-
cal background presented in Section 2, and it demonstrates that the structure that maximizes the
likelihood, given a maximum clique size, is an MkDG. In (Desphande et al., 2001), the authors
present, based on the results provided by Lauritzen (1996), a formal characterization of the set of
edges that can be added to a decomposable graph maintaining its decomposability, and they also
design an algorithm for its identification with a computational complexity of O(n2). In addition,
assuming that all the quantities required for guiding the search have already been computed,
they present a forward greedy algorithm that can learn MkDGs with a computational complexity
of O(k · n3), in the worst case. In Ding et al. (2007), a modification to the greedy procedure
proposed in Desphande et al. (2001) is presented. This procedure is related to the FT family of
algorithms because it constructs an MkDG by obtaining a sequence of MiDGs for i = 2, ..., k.
The main difference with respect to FT is that, at each step, the procedure proposed in Ding et al.
(2007) adds a single edge to the structure. Once an edge is added, it identifies new candidate
edges using the procedure proposed in Desphande et al. (2001), which leads to a computational
complexity of O(k · n3). As far as we know, these two algorithms are the most efficient ap-
proaches for learning MkDGs. In this work, under the same assumption, we present a family of
algorithms with a computational complexity of O(k · n2) in the worst case. The work of Sre-
bro (2000, 2003) demonstrates that the learning of maximum likelihood decomposable models,
with k greater than 2 and lower than n − 1, is NP-hard. Recently, two exact algorithms have
been proposed in order to deal with this problem (Corander et al., 2013; Kangas et al., 2014).
In (Corander et al., 2013) the authors characterize decomposable graphs using the junction tree
representation and the balancing condition. Then, they cast this characterization as a constraint
satisfaction problem which is formalized in the language of propositional logic. In (Kangas et al.,
2014) an alternative characterization of decomposable graphs based on recursive trees is used.
This characterization naturally yields a dynamic programming approach. Unfortunately, most of
the approximate algorithms proposed to deal with this problem are exponential in k (Chechetka
and Guestrin, 2008; Karger and Srebro, 2001; Bach and Jordan, 2001; Kovács and Szántai, 2010;
Malvestuto, 1991; Srebro, 2000, 2003; Szántai and Kovács, 2011) and, thus, they are unpractical
for dealing with high dimensional probability distributions, even for moderate values of k.

Recently, in (Kovács and Szántai, 2010; Szántai and Kovács, 2012; Proulx and Zhang, 2014),
a set of algorithms related to our proposal were presented. In (Kovács and Szántai, 2010), the
authors proposed a procedure for learning an M3DG coarser than an M2DG (a tree). This pro-
cedure is generalized in (Szántai and Kovács, 2012) to learn an M(k + 1)DG coarser than a
given MkDG. In (Proulx and Zhang, 2014) the generalization is adapted in order to be guided
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by the log likelihood. The algorithms are focused on the cliques rather than on the separators
and they are originally proposed to avoid the learning of an M(k+1)DG from scratch. They are
based on a junction tree representation of the graph which determines a specific neighborhood
of the cliques. Depending on the chosen junction tree, different structures can be attained by
the procedures. In other words, they do not take into account all the possible edges that can be
added to form an M(k+1)DG. These algorithms generate cliques of size k+1 considering pairs
of neighbor cliques and they continue the process until all the cliques are modified. However,
the algorithms do not guarantee to obtain an M(k + 1)DG and, thus, they require an additional
procedure to continue adding cliques of size k + 1 until an M(k + 1)DG is constructed. The
algorithm proposed in (Proulx and Zhang, 2014), at each step, considers the addition of a vertex
to a clique of size k. The vertex must belong to an adjacent clique in the selected junction tree
representation and it is selected according to the likelihood. Then, after the addition of the vertex,
the junction tree representation is updated by removing any non-maximal clique. This process
continues until all the cliques in the junction tree are of size k + 1. Finally, they transform the
obtained decomposable graph into an M(k+1)DG by an iterative procedure that adds cliques of
size k + 1 to the separators with a size smaller than k.

1.2. Contributions

In this work, we propose a family of efficient algorithms, called fractal tree (FT), for learn-
ing MkDGs using a divide-and-conquer strategy based on the particularities of MkDGs. The
algorithms construct a sequence of MiDGs, for i = 2, ..., k, in k − 1 growing steps. At each
growing step, the input maximal i-order decomposable graph is decomposed into subgraphs re-
lated to its separators. Then the subgraphs are solved using a novel extension of CL, called the
generalized Chow-Liu algorithm (see Section 3.2). The solutions to the subgraphs associated to
each separator are added to the input structure for generating the next M(i+ 1)DG.

This work proposes two variants of FT (see Section 4): the parallel fractal tree and the se-
quential fractal tree. Parallel fractal tree solves all the the subgraphs associated to the sep-
arators in parallel, without considering the interactions among them, while sequential fractal
tree solves them sequentially, taking into consideration their interactions. Both algorithms have
a computational complexity of O(k2 · n2 · N), in the worst case, which is k2 times the com-
putational complexity of CL implemented using Prim’s algorithm with adjacency lists. In the
performed experimental comparison, the fractal tree algorithms have shown a competitive per-
formance compared to other state-of-the-art algorithms.

Additionally, we have developed an efficient prune-and-graft operator that transforms an
MiDG into another MiDG with equal or higher likelihood. It has a computational complexity
of O(i · n2 · N). This procedure can be used at the end of each growing step of FT in order to
improve the obtained structure without increasing its computational complexity (see Section 5).

We consider that the FT family of algorithms is especially advisable to model high dimen-
sional domains due to the following reasons:

• Their computational complexity is quadratic in the number of implied random variables,

• due to their modularity they can be parallelized in terms of separators, and

• they produce a sequence of MiDG for i = 2, ...., k which allow it to select the most
appropriate model according to problem-dependent criterion.
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The efficient learning of (probabilistic) models for high dimensional domains can be considered
a key aspect in massive data analysis (Jordan et al., 2013).

The rest of this work is organized as follows. Section 2 introduces the main theoretical
background. We present the decomposable graphs, the decomposable models and the maximum
likelihood problem that we face in this work. In Section 3 we present the intuitions and the justi-
fication behind the fractal tree algorithms, which include the separator-based decomposition, the
separator problem and the generalized Chow and Liu’s algorithm. In Section 4 we present the
fractal tree family of algorithms. Additionally, two particular implementations of the family of
fractal tree algorithms are proposed: parallel fractal tree and sequential fractal tree. Section 5
presents the prune-and-graft procedure. Section 6 summarizes the experimental results obtained
by the proposed algorithms in six datasets from the UCI repository and more than 1000 artifi-
cial domains. In addition, a procedure for selecting an appropriate value of the parameter k is
explained. Finally, in Section 7 we present the conclusion of this work, highlighting the major
contributions.

2. Background

We denote by X = (X1, ..., Xn) an n-dimensional random variable which is distributed
according to the probability distribution p(X), where Xi is a univariate discrete random variable
for i = 1, ..., n. We denote an instantiation (a sample) of X by x = (x1, ..., xn), where xi is an
instantiation of Xi for i = 1, ..., n. Let C be a subset of the indexes {1, ..., n} of size |C|. The
random variable XC represents the |C|-dimensional random variable (Xi)i∈C .

A data set D = {x1, ...,xN} is a collection of N instances, independent and identically
distributed according to p(X). Given a data set D, the associated empirical probability dis-
tribution over X is given by p̂(x) = Nx/N , where Nx is the number of occurrences of x in
D. Empirical distributions are given in terms of the observed frequency estimates of the data
in a closed form. It should be noted that the empirical distribution is the maximum likelihood
distribution given D, i.e., p̂ = argmax

q

∏N
i=1 q(x

i).

2.1. Decomposable graphs

This section formally defines the decomposable graphs, the candidate edges and the maximal
k-order decomposable graphs. We are especially interested in maximal k-order decomposable
graphs because they form the structures of the maximum likelihood decomposable models with
a bounded clique size.

Let G = (V,E) be an undirected graph, where V = {1, ..., n} is a set of indexes called the
vertices of the graph and E is a set of pairs of vertices {u, v} called edges. A graph is said to be
complete if it contains every possible edge, i.e., E = {{u, v} : {u, v} ⊆ V }. An empty graph is
a graph without edges, i.e., E = ∅. The subgraph induced by V ′ ⊆ V , G[V ′] = (V ′, E[V ′]), is
a graph with the vertex set V ′, where the set of edges is given by E[V ′] = {{u, v} : {u, v} ⊆
V ′ ∧ {u, v} ∈ E}.

Definition 1. Let G = (V,E) and G+ = (V +, E+) be two undirected graphs. G+ is coarser
than G (or equivalently, G is thinner than G+) if V = V + and E ⊊ E+, and it is denoted as
G ≺ G+.

For example, G+ is coarser than G3, and G3 is thinner than G+ (see Figure 1).
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(a) Maximal 3-order decomposable graph, G3. (b) 4-order decomposable graph, G+.

Figure 1: Examples of decomposable graphs.

Definition 2. The neighbors of u in G is the set of vertices connected by an edge to u, {v ∈ V :
{u, v} ∈ E} and it is denoted by NG(u). We define the common neighbors of a set of vertices S
in G as the set of vertices connected by edges to all the vertices in S,

∩
u∈S NG(u). The common

neighbors of S are denoted by NG(S) or simply by N(S), when G it is clear from the context.
The subgraph induced by the common neighbors of a set of vertices S is called the mantle of S
and it is denoted as G[N(S)].

For example, NG3({2, 5}) = {1, 3, 6} and NG+({2, 5}) = {1, 3, 4, 6} (see Figure 1).
A path is a sequence of distinct vertices connected by edges. A cycle is a path that begins

and ends at the same vertex. A chord of a cycle is an edge among two vertices which are not
adjacent in the cycle. A connected component of a graph is a subgraph induced by V ′ ⊆ V in
which any two vertices are connected to each other by a path, and are not connected to vertices
in V \V ′ in the original graph. We say that an undirected graph is a decomposable graph (DG)
if for any cycle of length greater than 3 there exists a chord. Decomposable graphs are also
known in the literature as chordal graphs or triangulated graphs. In DGs, the tree-width is given
by the maximum clique size minus one and the computational complexity for solving inference
problems over a model is exponential with respect to its tree-width. A tree is a decomposable
graph with n − 1 edges without cycles. A forest is a decomposable graph where each of its
connected components is a tree. Note that empty graphs and trees are forests.

Given two non-adjacent indexes u and v, a subset S ⊆ V \ {u, v} is a separator for u and v,
when the graph induced by V \ S separates u and v into two different connected components. If
no proper subset of S is a separator for u and v, then S is a minimal separator for u and v. Any
C ⊆ V is called a maximal clique for G if the subgraph induced by C, G[C], is a complete
graph and there is no proper superset of C which induces a complete subgraph. From here on,
we will call the minimal separators and the maximal cliques, separators and cliques, for the sake
of brevity.

Let C1, ..., Cm be a numbered sequence of the set of cliques C(G). Let Si = Ci ∩
∪i−1

j=1 Cj

for i = 2, ...,m. The sequence C1, ..., Cm is said to be a chain of cliques for G if Si is contained
in some clique C ∈ {C1, ..., Ci−1} for any i = 2, ...,m. It can be proven that a graph G is a DG
if and only if it has a chain of cliques (Lauritzen, 1996). In DGs, the sets Si for i = 2, ...,m are
the (minimal) separators. We denote the set of separators (without repetition) associated to the
DG G as S(G).

In this work we propose a constructive procedure that adds edges to a DG while maintaining
its decomposability.
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Definition 3. Let G be a decomposable graph. We say that an edge is a candidate edge for G if
its addition to G produces a decomposable graph.

The following result, adapted from (Desphande et al., 2001), can be used to characterize the
set of candidate edges.

Theorem 4. Given a decomposable graph G = (V,E), an edge {u, v} /∈ E is a candidate
edge if and only if there exists a minimal separator S for u and v, such that {u, v} ⊆ N(S). The
addition of {u, v} to G creates the clique {u, v}∪S. We denote the set of candidate edges whose
addition creates cliques of size k as Ek(G).

We are interested in two types of decomposable graphs which control explicitly their maxi-
mum clique size.

Definition 5. A k-order decomposable graph (kDG) is a decomposable graph for which the
maximum clique size is k. A maximal k-order decomposable graph (MkDG) is a kDG for
which all the cliques are of size k and the addition of a candidate edge creates a clique of size
k + 1.

For example, G3 is an M3DG and G+ is a 4DG (see Figure 1). MkDGs are also known in
the literature as (k − 1)-hypertrees (Srebro, 2000). Note that the empty graph is an M1DG, a
forest is a 2DG and a tree is an M2DG. MkDGs are maximal in the sense that no more cliques
of size k can be constructed by adding candidate edges. An MkDG has the following interesting
structural properties, among others (Malvestuto, 1991):

Theorem 6. Let Gk be an MkDG. Gk fulfills the following properties

i) C(Gk) is a set of m = n− k + 1 cliques of size k, and
ii) the size of all the minimal separators in S(Gk) is k − 1.

2.2. Decomposable models

This section presents the decomposable models, probabilistic models based on decomposable
graphs. Let G be a DG with the set of cliquesC(G) and the set of separators S(G). We associate
each clique C in the set of cliques C(G) to the |C|-dimensional random variable XC and each
separator S in the set of separators S(G) to the |S|-dimensional random variable XS . A decom-
posable model (Lauritzen et al., 1984) is given by M = (G,PG), where G is a decomposable
graph, and PG is a set of probabilities associated to the cliques and the separators of G, PG =
{p(XC) : C ∈ C(G)} ∪ {p(XS) : S ∈ S(G)}. The probabilities satisfy that they are compat-
ible under marginalization, i.e.,

∑
xC\S

p(xC) =
∑

xC′\S
p(xC′) = p(xS) for any {C,C ′} ⊂

C(G) where C∩C ′ = S. The decomposable model M represents the following factorization of
the joint probability distribution p(x): pM (x) =

∏
C∈C(G) p(xC)/

∏
S∈S(G) p(xS)

dS , were dS
is the number of cliques that contain S minus one (Lauritzen et al., 1984). We call to dS degree
of the separator S. We call the decomposable models with kDG and MkDG structures, k-order
decomposable models and maximal k-order decomposable models, respectively.

The set of probabilities associated to a maximum likelihood decomposable model is known
to be the set of maximum likelihood probabilities (Lauritzen, 1996). Furthermore, the set of
maximum likelihood probability distributions can be computed in a closed form for decompos-
able models (Lauritzen, 1996), avoiding computational intensive iterative approaches such as
iterative proportional fitting. The maximum likelihood probability distributions are the empirical
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marginal probability distributions. Henceforth, we will concentrate on the structural learning of
the decomposable models. With a slight abuse in notation, from here on, we will denote pM by
pG to emphasize that once the use of the empirical probability distributions is decided upon, the
likelihood is a function of the graph G only.

A summary of the main theoretical concepts introduced together with its notation can be
found in Table 3 (see Appendix A: Theoretical results).

2.3. Learning maximum likelihood k-order decomposable models

This section formally defines the problem of learning maximum likelihood k-order decom-
posable models and a related problem.

Problem 1. Let D = {x1, ...,xN} be an i.i.d. data set according to an unknown distribution
p(X). This problem consists of finding a k-order decomposable graph G which maximizes the
likelihood of the data:

G∗ = argmax
G∈Gk

∏
x∈D

pG(x) (1)

where Gk denotes the set of k-order decomposable graphs.

Given a decomposable graph G and a coarser structure G+, the likelihood of G+ is equal
or higher (Malvestuto, 1991). Therefore, the solution to the problem of learning a maximum
likelihood kDG is an MkDG (Malvestuto, 1991). Consequently, our approaches restrict the
search of maximum likelihood kDG to the class of MkDGs. Problem 1 is equivalent to finding
the MkDG which minimizes the empirical entropy of X distributed according to pG, HG =
1
N

∏
x∈D pG(x) (Malvestuto, 1991). From here on we will deal with Problem 1 through the

minimum entropy formulation.
The learning of a maximum likelihood MkDG for k = 2 can be solved polynomially using

CL (Chow and Liu, 1968). This is significantly different than the general case of k > 2 where the
problem is NP-hard (Srebro, 2000, 2003). In order to deal with Problem 1, we propose tractable
suboptimal algorithms with a computational complexity of O(k2 · n2 ·N), in the worst case.

Next, we define a problem related to Problem 1.

Problem 2. Given an MkDG, Gk, and a data set D, find a maximum likelihood M(k + 1)DG
coarser than Gk.

If an algorithm can solve Problem 2, its recursive application would produce a sequence of
MiDGs for i = 2, ..., k, G2 ≺ G3 ≺ ... ≺ Gk (see Corollary 11 and the comments below),
where Gk could be a good approximation to Problem 1. Unfortunately, Problem 2 still remains
NP-hard for k > 1 (see Corollary 12).

3. A divide-and-conquer strategy

This section formally presents the intuitions behind FT. The theoretical justification can be
found in the Appendix.

FT follows a constructive procedure based on a two-fold divide-and-conquer strategy. First,
FT tries to construct a sequence of MiDGs for i = 2, ..., k, each one coarser than the previous
one. In other words, it decomposes Problem 1 into a sequence of k − 1 growing steps which
correspond to instances of Problem 2, where the solution to the ith instance of the problem is
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the starting structure of the next. As we noted in the previous section, Problem 2 is still NP-
hard. However, our goal is to propose an efficient approach to Problem 1 and FT is based on
an approximation to Problem 2 with a computational complexity of O(i · n2 · N) for an input
MiDG.

It should be noted that, in order to obtain a competitive approach to Problem 1, we do not
have to obtain the optimal solution to Problem 2 at each growing step. Given an MiDG thinner
than the optimal MkDG to Problem 1, we need to find an M(i+ 1)DG thinner than the MkDG.
In other words, at step i, we need to add candidate edges to the input MiDG which are included
in the optimal MkDG. In this sense, in order to obtain the target MkDG, different sequences of
MiDGs for i = 2, .., k can be constructed. FT tries to efficiently find one of these sequences.

3.1. Separator-based decomposition

In this section we introduce the separator-based decomposition, which can be used to deal
with Problem 2. This decomposition is the basis for the growing steps of FT. At the ith growing
step, the separator-based decomposition is used in order to i) efficiently identify the candidate
edges that create cliques of size (i + 1) and ii) decompose Problem 2 into a set of subproblems
related to the separators which can be efficiently solved.

Given an input MiDG, Gi, in order to obtain a coarser M(i+ 1)DG, we need to construct a
sequence of coarser (i + 1)DGs. Thus, in order to deal with Problem 2, we need to identify all
the candidate edges that create cliques of size i for Gi and for any (i+ 1)DG coarser than Gi.

As we indicated in Theorem 4, the identification of the set of candidate edges can be effi-
ciently performed using the separators, which motivates the next definition.

Definition 7. Let S be a separator of a DG G. The set of candidate edges due to S in G is
defined as

EG(S) = E2(G[N(S)])
= {{u, v} : u and v are at distinct connected components in G[N(S)]}

The set of candidate edges due to a separator is composed by the candidate edges that create
cliques of size 2 in its mantle. This set can be efficiently determined by the set of pairs of vertices
which belong to different connected components of the mantle.

We call separator-based decomposition for a graph G induced by a set of separators S to
the set of mantles due to S, {G[N(S)] : S ∈ S}. This decomposition can be used to efficiently
determine the set of candidate edges for a decomposable graph due to a set of separators. Note
that by selecting S = S(G) we can determine the set of candidate edges for G. In order to
efficiently determine the set of candidate edges due to a separator, we suggest characterizing the
mantle by the sets of vertices associated to their connected components.

By Theorem 4, we know that the addition of a candidate edge due to S creates a clique of
size |S| + 2. Thus, the size of the separator can be used to effectively control the size of the
created cliques. In order to deal with Problem 2, we need to identify the candidate edges that
create cliques of size i+ 1 and, therefore, we need to identify the set of separators of size i − 1
for Gi and for any particular (i + 1)DG coarser than Gi, G+. For Gi this subset is its set
of separators, S(Gi) (see Theorem 6). Furthermore, by Corollary 16, we know that the set of
separators of size i − 1 for G+ is contained in S(Gi). Consequently, in order to determine the
set of candidate edges for Gi (and G+) that create cliques of size i+ 1, it is enough to perform
the separator-based decomposition for Gi (or G+) induced by S(Gk) (see Proposition 17).
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It should be noted that the separator-based decomposition induced by S(Gi) decomposes Gi

and G+ into mantles with a forest structure. Moreover, all the mantles for Gi are empty graphs
while the mantles for Gi are forest in general (see Proposition 18), which includes empty graphs
and trees. Using this decomposition, Problem 2 can be approximated by dividing it into a set of
separator problems.

Problem 3. [The separator problem] Let G be an MiDG or a coarser (i+ 1)DG and let D be
a data set. Let S be a separator of G of size i− 1 where its mantle G[N(S)] is a forest. Find the
tree coarser than the mantle of S that produces the subgraph induced byN(S)∪S, G[N(S)∪S],
which maximizes the likelihood.

It should be highlighted that the mantle of every separator of size i − 1 in G is a forest (see
Proposition 18). From here on, for the sake of brevity, we say that a separator is solved when its
associated separator problem is solved.

In summary, given an input MiDG Gi, FT decomposes Problem 2 into a set of separator
problems using the separator-based decomposition induced by S(Gi). Then, FT solves every
separator by creating a tree in its mantle. Finally, it joins the partial solutions to each separator
problem to form the output M(i+ 1)DG used to approximate Problem 22.

3.2. The generalized Chow-Liu algorithm
In this section we present a natural extension of the Chow-Liu algorithm (CL, Chow and Liu

(1968)) called the generalized Chow-Liu algorithm (GCL), which solves the separator prob-
lem. GCL creates a maximum weighted tree in the mantle of the separator S using a maximum
spanning tree solver. The weight assigned to a candidate edge {u, v} due to S is given by the
empirical conditional mutual information Î(Xu, Xv|XS) (see Proposition 10). This procedure
is equivalent to CL with the appropriate weights and it solves Problem 3. For a review of other
extensions of CL we refer the reader to (Højsgaard et al., 2012).

Given the required mutual information quantities, a simple and efficient maximum spanning
tree solver for dense graphs3 is Prim’s algorithm with adjacency lists, which has a computational
complexity of O(n2). Prim’s algorithm constructs a tree sequentially by adding the edge with
the highest weight from a vertex in the tree to a vertex not connected to the tree. This algorithm
can be easily adapted to deal with a forest instead of an empty graph by considering the vertices
in one of the connected components of the input forest as a unique vertex. In (Eisner, 1997)
the reader can find other alternatives to Prim’s algorithm with adjacency lists, such as Kruskal’s
algorithm or Prim’s algorithm with Fibonacci heaps, that can also be used in order to implement
GCL. We would like to point out that, for dense graphs, Prim’s algorithm with Fibonacci heaps
has the same complutational complexity as Prim’s algorithm with adjacency lists. However, since
it is harder to implement, we recommend the use of Prim’s algorithm with adjacency lists.

Due to the low computational complexity of the selected maximum spanning tree solver,
the computational complexity of GCL is dominated by the computation of the required O(n2)
conditional mutual information quantities. A straightforward computation of the empirical con-
ditional mutual information Î(Xu, Xv|XS) with |S| = i− 1 has a complexity of O(i ·N + 2i)
(for binary random variables), which is exponential in i. However, assuming that 2i < N , we
have a complexity of O(i · N). We would like to emphasize that the assumption of 2i < N is

2We would highlight that the union of the partial solutions added to the MiDG usually does not form a tree.
3Graphs that consider O(n2) edges for constructing a maximum spanning tree.
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necessary if we do not want to suffer from the overfitting phenomenon (see Section 6). Since
GCL requires to compute O(n2) empirical conditional mutual informations, its computational
complexity is O(i · n2 · N). In order to speed up the implementation of GCL, we recommend
parallelizing the computation of the conditional mutual informations following a procedure such
as that proposed in (Madsen et al., 2014).

3.3. Generation of new candidate edges

The addition of a candidate edge to a decomposable graph can cause the generation of new
candidate edges. Thus, the order in which candidate edges are added can be crucial in order to
solve an instance of Problem 2.

Definition 8. Let G be an MiDG or a coarser (i+ 1)DG, let S and S′ be two separators of G
with size i+ 1 where {u} = S′ \ S. We say that S′ is adjacent to S if u ∈ NG(S).

It should be noted that the relation is symmetric4 and, thus, we say that S and S′ are adja-
cent. We say that a separator S blocks two separators S′ and S′′, if every sequence of adjacent
separators starting in S′ and ending S′′ contains S.

In terms of separators, the addition of a candidate edge due to a separator can only modify the
mantles of adjacent separators (see Proposition 19). The addition can cause the set of candidate
edges due to the adjacent separator to increase (never decrease): it can donate a vertex from its
mantle by connecting it to a vertex of the mantle of the adjacent separator (see Proposition 19
for further details). In other words, the addition of an edge to the mantle of a separator only can
change the problem associated to an adjacent separator. Therefore, the ordering in which the
separator problems are solved can have a great impact in the obtained solution to Problem 2.

4. Fractal tree algorithms

Next, we propose two particular FT algorithms: parallel fractal tree and sequential fractal
tree5. On the one hand, parallel fractal tree represents the most efficient algorithm and, on the
other hand, sequential fractal tree obtains better results for dealing with Problem 1.

Algorithm 1. (Parallel fractal tree)
Input: A data set D = {x1, ...,xN}, a positive integer k ≤ n.
Output: An MkDG.
Pseudocode:

1. Initialize the empty graph G1.

2. For i = 1, ..., k − 1 :

3. -For each separator S ∈ S(Gi), do (parallel growing step):
4. Apply GCL algorithm to the mantle of S for obtaining ES.

5. -Add ES to Gi+1 for every S ∈ S(Gi).

6. -Gi+1 := Gi.

7. -Obtain the separators of Gi+1.

8. Return Gk.

4i.e., if S′ is adjacent to S then S is adjacent to S′
5The implementation in Python of the proposed algorithms is publicly available at

https://bitbucket.org/AritzPerez/fractaltree.
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4.1. Parallel fractal tree
The pseudo-code of parallel fractal tree (PFT) is given in Algorithm 1. At each parallel

growing step (lines 3-5), this algorithm solves the separator problems ignoring the interactions
among the mantles of different separators (see Proposition 19). It should be noted that, at the ith

growing step, given an MiDG, Gi, PFT achieves one of the maximum likelihood M(i+ 1)DGs
that can be constructed by adding a subset of the set of candidate edges Ei+1(Gi) to Gi.

In PFT, the growing step (Algorithm 1, lines 3-4) can be performed in parallel for each
separator because the set of candidate edges considered for each separator S is static. That is,
its set of candidate edges E(S) is not updated by the addition of edges to the mantles of other
separators. It should be noted that, for mantles with only two vertices, the computation of the
empirical conditional mutual information can be avoided because it has a single candidate edge.

4.2. An example with PFT

(a) Undirected graph representation of G2. (b) Edge-separator graph representation of G2.

Figure 2: This figure shows the M2DG, G2, obtained after the first growing step of both PFT and SFT. Two alternative
representations are shown: undirected graph and edge-separator graph representation (Malvestuto, 2012). In the edge-
separator graph representation, we have represented the cliques by circles and the separators by squares.

(a) The mantle of {2}. (b) The mantle of {5}. (c) The mantle of {8}.

Figure 3: This figure shows the mantles of the separators of the M2DG, G2, shown in Figure 2. Note that all the mantles
are empty subgraphs.

Figures 2, 3, 4 and 5 illustrate an execution in a domain with n = 8 random variables for a
maximum clique size of k = 3. The first parallel growing step is equivalent to CL because the
empty graph is the M1DG, which has the empty set as the unique separator. The second parallel
growing step divides the obtained M2DG, shown in Figure 2, into the mantles associated to the
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separators S(G2) = {{2}, {5}, {8}}. The corresponding mantles are shown in Figures 3a, 3b
and 3c, respectively. Once the mantles are determined, GCL is applied to solve each separator
problem without taking into account the interactions among them. The obtained results are
illustrated in Figures 4a, 4b and 4c, respectively. Finally, the solutions to each separator problem
are gathered together to form the attained M3DG, shown in Figure 5.

(a) The solution to the
mantle of {2}.

(b) The solution to the mantle of {5}. (c) The solution to
the mantle of {8}.

Figure 4: This figure shows the solutions, given by the PFT algorithm, to the separator problems represented in Figure
3. Note that all the solutions correspond to trees. The solid lines represent the edges added during the parallel growing
step to each mantle by GCL, while the dashed lines represent the edges that appear in the mantles due to the addition of
edges in the mantles of adjacent separators.

(a) Undirected representation of GPFT
3 . (b) Edge-separator graph representation of GPFT

3 .

Figure 5: This figure shows the solution obtained by PFT, GPFT
3 , which has been created by adding the partial solutions

to the mantles of each separator of G2 (see Figure 4). The solid lines in Figure 5a represent the edges added in the last
growing step while the dashed lines represent the edges added in the previous step.

PFT adds a forest at each growing step (see Figure 5a). In consequence, on average, as i
increases the degree of the separators tends to decrease in the sequence of MiDGs constructed
by PFT. Thus, as i increases, PFT has a natural tendency towards separators of lower degree.
We call this phenomenon the chain caveat. This tendency could influence the behavior of the
algorithm for approximating some instances of Problem 16. The effect of the chain caveat can be
intensified if the empirical mutual information quantities have low information (see Section 6.2).
The chain caveat is a direct consequence of the expected degree of the vertex of a tree, which is
2.

6e.g., instances whose optimal solutions have separators of high degree
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Furthermore, the addition of a forest at each growing step limits the structures that can be
learned by PFT: it can not attain decomposable graphs with cliques containing more than two
separators. The generated cliques and separators are related to the edges and separators of the
added forest, respectively. Since each edge of the forest connects two vertices and the separators
are a subset of the vertices, each clique can not contain more than two separators. An example
of unattainable structure is shown in Figure 7, where the clique {2, 4, 5} contains the separators
{2, 4}, {2, 5}, and {4, 5}. We call this phenomenon the unattainable structure caveat. In the
performed experimentation with artificial domains, we have randomly sampled MkDGs using
Algorithm 5, and almost all of the generated structures are unattainable. However, PFT has
shown a competitive behavior even in these domains.

4.3. Sequential fractal tree algorithm
The sequential fractal tree (SFT) algorithm increases the number of candidate edges consid-

ered at each growing step with respect to PFT and avoids the chain and the unattainable structure
caveats. Assuming that the ith step of PFT and SFT starts from the same MiDG structure, the
growing step of SFT obtains an M(i + 1)DG structure with a likelihood equal to or higher than
that obtained by PFT. The pseudo-code of SFT is shown in Algorithm 2.

In SFT, the separators are solved sequentially using GCL (Algorithm 2, lines 4-6). After the
application of GCL to a separator, the mantles of the adjacent separators are modified (Proposi-
tion 19) and, therefore, the set of candidate edges of the adjacent separators can increase. The
increase of the size of the mantles can produce an exponential increase in the possible solutions
(trees) that can be generated in the mantle. In addition, while the parallel growing step adds
forests to the input MkDG, the sequential growing can add more general decomposable struc-
tures, which avoids the unattainable structure caveat. For example, Figure 7 shows a structure
where the clique {2, 4, 5} contains three separators, {2, 4}, {2, 5} and {4, 5}.

Algorithm 2. (Sequential fractal tree)
Input: A data set D = {x1, ...,xN}, a positive integer k.
Output: An MkDG.
Pseudocode:

1. Construct S(G1) for the empty graph G1.

2. For i = 1, ..., k − 1:

3. -Sort the separators7 in S(Gi) for Gi.

4. -Gi+1 := Gi.

5. -For S ∈ S(Gi) in order, do (sequential growing step):
6. Apply GCL to the mantle of S in Gi+1 for obtaining E.

7. Add E to Gi+1 (Proposition 19).

8. -Obtain the separators of Gi+1.

9. Return Gk.

The sequential growing step requires defining an order among the separators for the applica-
tion of the GCL algorithm. Different criteria can be used to sort the separators. In the performed
experimentation, we have observed that sorting the separators by the number of vertices in their
mantles in ascending order tends to consider more candidate edges. It should be noted that the
solution to a separator increases the size of the mantle of its adjacent separators. In addition, the

7e.g., by the number of connected components of their associated subgraph.
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number of candidate edges of a separator grows quadratically with the number of vertices in its
mantle and the possible trees that can be learned grows exponentially with this number. Conse-
quently, roughly speaking, by solving the separators with smaller mantles first we are increasing
the size of the bigger mantles. Therefore, using this criterion, SFT tends to consider more arcs
and it can attain more structures due to their quadratic and exponential growth, respectively.
In the experimentation we have observed that the criterion based on the size of the mantle has
obtained the best results for approximating Problem 1, among the sorting criterion considered.

4.4. An example with SFT

(a) The mantle of {5}. (b) The solution the mantle of {5}.

Figure 6: This figure shows the mantle of {5} due to the interactions with the mantles of the separators {2} and {8}.
The dashed lines represent the edges added due to the interaction with other separators.

Figures 2, 3, 4, 6 and 7 illustrate an execution of SFT. The first (i = 1) sequential growing
step (lines 4-6, Algorithm 2) is equivalent to PFT and the obtained structure is shown in Figure
2. The second (i = 2) sequential growing step divides the M2DG obtained in the previous step
into the mantles associated to the separators {2}, {5} and {8}. The obtained mantles are shown
in Figures 3a, 3b and 3c. At this point, the behavior of SFT starts to be different to PFT. First, the
order in which the separator problems are solved is decided. In this work, we sort the separators
according to the number of connected components of their mantles in ascending order. The
number of components of the mantles of {2}, {5} and {8} are 3, 4 and 2, respectively. First,
SFT solves the separator {8}, which has the same solution as in PFT (see Figure 4c). However,
the addition of the edge {5, 7} interacts with the mantle of separator {5}, as {5} is contained in
the new clique {8} ∪ {5, 7} (see Proposition 19). Then the separator {2} is solved. Since the
addition of the edges to the mantle of {8} does not produce changes in the mantle of {2}, the
same solution as PFT is obtained for {2} (see Figure 4a). In this case, the addition of the edge
{4, 5} modifies the mantle of separator {5}, as {5} is contained in {8} ∪ {4, 5}. Finally, the
mantle of the separator {5} shown in Figure 6a is solved. The solution is shown in Figure 6b.
The edge {4, 7} is added instead of {6, 8}, which is added by PFT. At the end of the execution,
SFT obtains the structure shown in Figure 7.

4.5. Computational complexity

In the worst case, PFT and SFT have the same computational complexity. As noted at the end
of Section 3.2, the computational complexity of the GCL algorithm is dominated by the compu-
tation of the required mutual information quantities. As a direct consequence, the computational
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(a) Undirected representation of GSFT
3 . (b) Edge-separator graph representation of GSFT

3 .

Figure 7: This figure shows the solution obtained by SFT, GSFT
3 , which has been created by adding the partial solutions

to the mantles of each separator of G2 (see Figures 3a, 6a and 3c). The solid lines represent the edges added in the last
growing step while the dashed lines represent the edges added in the previous step.

complexity of the growing step i is also dominated by the computation of the required mutual
information quantities. By Corollary 21, the worst case corresponds to an MiDG with a single
separator. For this case, the parallel and sequential growing steps require computing

(
n−i+1

2

)
mutual information quantities. Therefore, the overall computational complexity of PFT and SFT
is O(k2 · n2 · N), in the worst case. It should be noted that the worst case corresponds to a
sequence of MiDGs Gi for i = 1, ..., k − 1, where S(Gi) is composed by a single separator,
which is overwhelmingly improbable.

In addition, the parallel growing step can be completely parallelized solving each separa-
tor problem independently because PFT does not take into account the interactions among the
mantles. Furthermore, as we noted in Section 3.2, GCL can be also parallelized, for instance,
following (Madsen et al., 2014).

The sequential growing step of SFT can be also parallelized, however, there is a trade-off
between the degree of parallelization and the number of interactions among the separators con-
sidered. In order to achieve a good trade-off, we recommend creating sets of non-adjacent sepa-
rators (see Definition 8 for the notion of adjacent separators). The number of sets of separators,
s, required is given by the maximum number of separators adjacent to a given one, in the worst
case. In the case of MkDGs, it is always possible to create k sets of non-adjacent separators. For
instance, for the M2DG shown in Figure 2 we can construct S1 = {{2}, {8}} and SS = {{5}}
(s = 2 = k), for the M3DG shown in Figure 1a we can construct S1 = {{2, 4}, {3, 5}, {5, 8}}
and S2 = {{2, 5}, {5, 6}} (s = 2 < k) and for the M3DG shown in Figure 7 we can construct
S1 = {{2, 4}, {5, 7}}, S2 = {{2, 5}} and S3 = {{4, 5}} (s = 3 = k). Therefore, given an
MkDG a sequential growing step can be parallelized in k steps, in the worst case, which is in-
dependent from its number of vertices n. That is, first we can solve in parallel all the separators
of S1, then we can solve S2 in parallel and we can continue this iterative process until we solve
in parallel all the separators in Ss. Once, the sets of separators are constructed, we can decide
the order in which they are solved. We recommend using a criteria based on the average square
degree of the separators contained in each set of separators, where the sets are solved from the
lowest values to the highest.
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5. A prune-and-graft operator for MkDGs

In this section we present a prune-and-graft operator (P&G) for MkDG structures, by ex-
tending the concept of a leaf vertex from trees to MkDGs. This procedure is used in order to
improve the likelihood of the structures obtained by the fractal tree algorithms at the end of each
growing step. P&G exploits the structural constraints of MkDGs. The procedure consists of
removing each leaf vertex from its separator (prune) to insert into the separator (graft) that max-
imizes the likelihood. In summary, P&G transforms the input MkDG into another MkDG with
an equal or higher likelihood by moving the leaf vertices. Next, we define the terms leaf (vertex)
and stem (separator) in order to simplify the description of the P&G procedure.

Definition 9. Let Gk be an MkDG. A vertex u is called a leaf for a Gk, when it is not included
in any of the separators of Gk, u ∈ V \

∪
S(Gk). A separator is called stem for Gk, when all

but one of the vertices in its mantle are leaf vertices, |N(S) \
∪
S(Gk)| = |N(S)| − 1.

In other words, a leaf of an MkDG belongs to a single clique C. A leaf can be removed
from an MkDG without creating additional separators. Thus, when a leaf is removed from an
MkDG we obtain a smaller MkDG. Then, if we create a new clique by adding the pruned leaf
to a separator of the obtained MkDG, we create another MkDG of the same size as the original
MkDG (see Proposition 24). A stem is a separator with a single non-leaf vertex. It is used to
designate a separator that can lose the condition of being separator due to the effect of the P&G
procedure and, thus, it can be removed from the set of separators.

Algorithm 3. (Prune-and-graft procedure)
Input: The MkDG Gk = (V,E) and a data set D.
Output: An MkDG.
Pseudocode:

1. L := ∅, treated := ∅
2. For S ∈ S(Gk) (find the stems)
3. -If |N(S) \

∪
S(Gk)| = |N(S)| − 1

4. L := L ∪ {S}
5. Sort S ∈ L in ascending order of |N(S)|
6. For S ∈ L (P&G the stems)
7. -For u ∈ (N(S) \

∪
S(Gk)) \ treated

8. treated := treated ∪ {u}
9. S∗ := argmax

S′∈S(Gk)
I(Xu;XS′ )

10. E := (E \ {{u, v} : v ∈ S}) ∪ {{u,w} : w ∈ S∗}
11. -If |N(S)| = 1, then (remove a stem)
12. Remove S from S(Gk)

13. For S′ ∈ S (find a new stem)
14. -If |N(S′) \

∪
S(Gk)| = |N(S′)| − 1

15. Append S′ to L
16. S := S \ {S′}; Go to (6)
17. S := S(Gk) \ L
18. For S ∈ S (P&G the rest of separators)
19. -For u ∈ (N(S) \

∪
S(Gk)) \ treated

20. S∗ := argmax
S′∈S(Gk)

I(Xu;XS′ )

21. E := (E \ {{u, v} : v ∈ S}) ∪ {{u,w} : w ∈ S∗}
22. return the MkDG (V,E)
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The pseudo-code of P&G is given in Algorithm 3. The P&G procedure is divided in two parts.
In the first part (lines 1-17), all the stems are pruned and grafted. This part starts by identifying
the stems (lines 2-4). The stems are treated in a different way because, as we noted before, they
can be removed by the P&G procedure. If all the leaves belonging to a stem are pruned and
grafted into other separators, the stem only has a single vertex in its mantle. Therefore, it loses
its condition of being a separator in the structure and it is removed (lines 11-12). The removal
of a stem can cause the creation of a new one (see lines 13-16). In the second part (lines 17-22),
the rest of the separators are considered. In this case, the mantles of the separators have at least
two vertices that are not leaves. Thus, the separators can not be removed because the size of their
mantles can not be smaller than 2.

The pruning of the leaf u from the separator S, reduces the entropy of the structure in
Ĥ(Xu) − Î(Xu;XS), where Ĥ and Î denote the empirical entropy and empirical mutual in-
formation, respectively. Grafting u into S′ increases the entropy of the structure in Ĥ(Xu) −
Î(Xu;XS′). Thus, the optimal pruning and grafting of leaf u (line 9,20) consists of pruning
from its separator S and grafting into the separator S∗ = argmax

S′∈S(Gk)

Î(Xu;XS′) (see Proposition

24). Therefore, P&G transforms an MkDG into another MkDG with an equal or higher likeli-
hood. Note that, when S = S∗, the prune-and-graft process has no effect over the MkDG. At
the end of the first step, the P&G operator is not applied because the obtained M2DG is optimal
from the likelihood point of view (line 8, Algorithm 2).

In the worst case, there are O(n) leaf vertices and O(n) separators, where each leaf vertex
is considered once. Thus, O(n2) empirical mutual informations are computed which, assuming
that k ·N > 2k, has a computational complexity of O(k · n2 ·N). The leaf separators are sorted
by the size of the mantle, which requires O(n log n) computations. Therefore, the computational
complexity in the worst case of the P&G procedure is O(k · n2 ·N). It should be noted that the
M2DG obtained at the end of the first growing step of the fractal tree algorithms is optimal and
the P&G procedure has no effect in that structure and, thus, the P&G procedure is applied k − 2
times in fractal tree algorithms. Therefore„ the computational complexity of the application
of the P&G procedure at the end of the last k − 2 growing steps (MiDGs for i = 3, ..., k) is
O(k2 · n2 · N). In consequence, in the worst case, PFT and SFT with the P&G procedure
remains with a computational complexity of O(k2 · n2 ·N).

5.1. An example with P&G

Figures 7 and 8 illustrate the effect of the P&G procedure (Algorithm 3). P&G takes the
M3DG GSFT

3 shown in Figure 7 as input and identifies the stems {2, 4}, {2, 5} and {4, 5}. Then
it considers the pruning and grafting of their leaves {1, 3, 6, 8}. In this case, P&G only prunes
the leaf vertex 8 from the common neighbors of {5, 7} and grafts it in the separator {2, 4}. Since
the common neighbors of {5, 7} has 4 as its only vertex, the separator is removed. Then, the
separator {4, 5} becomes a new stem and vertex 7 a new leaf (see Figure 8).

6. Experimentation

This section presents a set of experiments which provide evidence about the effectiveness of
the proposed algorithms for approximating Problem 1. The results obtained in the experimenta-
tion are summarized using the following measures:

18



(a) Undirected graph representation (b) Edge-separator graph representation

Figure 8: This figure shows the structure obtained after the prune-and-graft operator is applied to GSFT
3 (see Figure 7).

The solid lines represent the edges added by the P&G procedure, the dotted lines the removed edges and the dashed lines
the edges from GSFT

3 that are preserved.

• Power of fitting: Measures the capability of the learned models to fit (explain or comprise)
the available data. It is the likelihood of the training set (given the model), divided by the
product of the number of random variables n and the number of training samples N . Thus,
it is a scaled version of the likelihood of the training set, which allows us to compare results
obtained for a different number of random variables and number of samples. The score is
negative and a higher value8 represents a better result. The goal of our proposals consists
of the maximization of this score because it is directly related with Problem 1.

• Power of generalization: Measures the capability of the learned models to explain unseen
data. The score is computed as the likelihood of a test set (given the model), divided by
the product of the number of random variables n and the number of test samples. This is a
scaled version of the likelihood in the test data, which is comparable to the power of fitting.
Even if this score is not directly related with Problem 1, a high power of generalization is
a desirable feature of any probabilistic model. As the number of training and test samples
grow, the power of generalization and the power of fitting tend to the same value.

• Execution time: We have measured the CPU time required by the learning algorithms.
In order to perform a fair comparison, the execution time has been measured for the non-
parallelized versions of PFT and SFT, where SFT uses the P&G procedure. The experi-
ments have been carried out in a cluster consisting of Intel-Xeon X5650 at 2.67GHz.

It should be noted that these scores allow us to perform an intuitive scalability study with respect
to the number of random variables and the number of training samples. For instance, we can
study the convergence of the power of fitting and the power of generalization to the same value
as N increases.

PFT and SFT with P&G procedure are compared against the forward greedy algorithm (FG)
adapted from (Desphande et al., 2001). We have implemented an efficient procedure based on the
separator-based decomposition, following the intuitions provided in Section 3. The pseudo-code
of FG is shown in Algorithm 4. The efficient implementation of FG shares many similarities
with the fast implementation proposed by Desphande et al. (2001). At every step, FG adds the
candidate edge with the maximum weight (line 5), actualizes the sorted list of candidate edges

8i.e., a less negative value
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Nomenclature Name Nomenclature Name
PFT Parallel fractal tree (Alg. 1) FG Fast greedy (Alg. 4)
SFT Sequential fractal free with prune-and-graft (Algs. 2 and 3) KA (Kangas et al., 2014)
CL Chow-Liu algorithm (Chow and Liu, 1968) SK (Szántai and Kovács, 2011)

Table 1: The algorithms and their nomenclatures.

(lines 6, 8, 9 and 10), updates the mantles of the separators (lines 6 and 10, see Proposition 19)
and updates the set of separators (lines 7, 8 and 9, see Theorem 13). The main difference of PFT
and SFT with respect to FG is the way in which they construct an MkDG. PFT and SFT progress
by solving separator problems, which are solved by means of a maximum spanning tree solver.
In addition, the separator problems can be parallelized using different strategies (see Section 4.5).
Finally, PFT and SFT construct a sequence of MiDGs for i = 2, ..., k in k−1 growing steps and,
at each growing step, the set of separators is fixed.

We have included CL in the comparison as a reference for the following reasons: i) The tree
learned by CL is included in the structures obtained by PFT, SFT and FG. Thus, CL is a good
reference to measure how much is gained by the three algorithms when the maximum clique size
is increased, and ii) we can compare the execution time of the proposed methods with respect to
CL, which is the lower bound for the three algorithms.

Additionally, we have compared our proposals with two algorithms of exponential compu-
tational complexity: Szantai-Kovac’s algorithm (SK) (Szántai and Kovács, 2011) and the algo-
rithm presented in (Kangas et al., 2014) (KA). It should be highlighted that SK is an approximate
algorithm while KA is exact and obtains the optimum solution to Problem 1 (maximum power of
fitting). Due to their exponential computational complexity we have restricted the experiments
to domains with a low dimensionality (n = 18). Table 1 indicates the correspondence between
the algorithms and the nomenclature used throughout the experimental section.

Algorithm 4. (Forward greedy)
Input: A data set D = {x1, ...,xN}, a positive integer k.
Output: An MkDG.
Pseudocode:

1. S = {∅}, E = E(∅), G = (V,E) where E = ∅.
2. Compute the weight I(Xu;Xv |XS) associated to each {u, v} ∈ E.
3. Sort each edge in E by its corresponding weight, in descending order.

4. For i = 1, ..., (k − 1)n− k(k − 1)/2 do

5. -Add the first edge {u, v} from the list E due to its separator
S to E.

6. -Update the mantle of S and remove the edges from E due to S that are not
candidate edges.

7. -If S is not a separator, remove S from S
8. -If needed, add the separator S ∪ {u} in S, compute the weight associated

to its candidate edges, and insert them in E.
9. -If needed, add the separator S ∪ {v} in S, compute the weight associated

to its candidate edges, and insert them in E.
10. -Update the mantle of every S′ ⊊ S ∪ {u, v}, compute the weight of the new

candidate edges due to S′ and insert them into its sorted list.

11. return G
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Id Name N n ID. Name N n
1 KDD: internet usage 10108 66 4 Optical recognition of handwritten digits 5620 65
2 KDD: IPUMS la 99 8844 36 5 SPAM e-mail 4601 58
3 mushroom 8124 22 6 Waveform 5000 41

Table 2: The names of the data sets used in the experimentation, with the number of available samples, N , and the
number of implied random variables, n. The data sets will be referred by the identification number (column ID).

6.1. Data from the UCI repository

This section presents a set of results obtained in 6 data sets from the UCI repository with
more than 4500 instances. The main features of these domains (n and N ) are summarized in
Table 2. The continuous random variables have been discretized in two intervals by means of the
equal frequency strategy. Next, missing values have been replaced by the most frequent value
of the discrete random variable. Finally, random variables with more than 10 states have been
removed from the data in order to avoid variables that represent identifiers of the samples.

The experiments have been performed for k ∈ {3, 4, 5} and N ∈ {150, 450, 1350, 4050}.
For each data set and each value of N we have performed a paired 10 times repeated holdout
procedure (Rodríguez et al., 2013) to estimate the power of fitting and the power of generalization
of each learned model. In each of the 10 repetitions we have sorted the available data at random
and we have selected the first N instances to learn the model and compute its power of fitting.
Then, the power of generalization has been computed using the instances from position 4051.
Next, we have computed estimated power of fitting and power of generalization using the average
across the 10 repetitions. The experiments include CL, which represents the optimal solution to
Problem 1 for k = 2. The first growing step of PFT and SFT is equivalent to CL and, thus, CL is
used in order to show the relative increase of the power of fitting as k increases.

Two different experiments have been performed. In the first, we compare PFT, SFT, FG, KA
and SK. In order to include SK and KA, we have selected the 18 variables with higher entropy
values. This experiment is used to illustrate the behavior of PFT and SFT against the optimum
solution of instances of Problem 1, which are given by KA. Figures 9 and 10 summarize the
obtained average estimated power of fitting and power of generalization values across the six
data sets from the UCI repository. The results clearly indicate that PFT, SFT, FG, KA and SK
obtain similar results in terms of the power of fitting and power of generalization, KA being
slightly better in terms of power of fitting and PFT being slightly better in terms of power of
generalization for k ∈ {4, 5}. On the one hand, the obtained results illustrate that as N increases,
the power of fitting and power of generalization converge to the same values. For k = 3 the
convergence is attained for N = 4050. On the other hand, even with N = 4050 there is a
discrepancy between the power of fitting and power of generalization for k = 4 and (especially)
for k = 5, due to the overfitting phenomena.

In the second experiment, we compare PFT, SFT and FG using all the variables (see Table
2 for further details). Figures 11 and 12 summarize the obtained results. The conclusions are
similar to the previous experiment. All the learned models obtain similar results. As N increases,
the power of fitting and power of generalization converge to the same value. The convergence is
reached for k = 2 (CL) with N = 1350 and for k = 3 with N = 4050. For k = 4 and k = 5
more data seems to be required to reach the convergence, which indicates that there is still room
for improvement regarding the power of generalization.
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Figure 9: The figure shows the evolution of the average power of fitting with respect to N ∈ {150, 450, 1350, 4050}
for k ∈ {3, 4, 5} in the real data using n = 18 variables. KA represents the optimal solution to Problem 1.
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Figure 10: The figure shows the evolution of the average power of generalization with respect to N ∈
{150, 450, 1350, 4050} for k ∈ {3, 4, 5} in the real data using n = 18 variables.

6.2. Artificial domains with MkDG structure

This section presents a set of results obtained in domains9 with MkDG structure. It should
be noted that the generated MkDG structures represent the optimal solution to Problem 1 given
enough data. By means of these domains we can study the error produced by our approaches
with respect to the optimum solutions of instances from an NP-hard problem with more than
1000 variables. This analysis allows us to perform a scalability study with respect to N , n and

9i.e., probability distributions
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k. In this section we study the evolution of the power of fitting and power of generalization with
respect to N until the convergence is reached for different values of n and k.
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Figure 11: The figure shows the evolution of the average power of fitting with respect to N ∈ {150, 450, 1350, 4050}
for k ∈ {3, 4, 5} in the real data. KA represents the optimal solution to Problem 1.
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Figure 12: The figure shows the evolution of the average power of generalization with respect to N ∈
{150, 450, 1350, 4050} for k ∈ {3, 4, 5} in the real data.

These structures have been randomly obtained using the procedure described in Algorithm
5. We have generated structures for k ∈ {3, 4, 5} and n ∈ {40, 80, 160, 320, 640, 1280}. In
addition, in order to compare PFT and SFT against SK and KA, we have generated domains with
18 variables. The random variables are binary and the parameters of the model associated to
each structure have been randomly sampled from a symmetric Dirichlet distribution with α =
1. For each type of domain, we have generated at random 50 different models (structure and
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parameters). In order to study the influence of the amount of available data, we have sampled
training sets with different sizes, N ∈ {100, 300, 1000, 3000, 10000, 30000}. The generated test
sets used for computing the power of generalization are of size M = 10000. All the figures that
summarize the results obtained in artificial domains with an MkDG structure include the power
of generalization of the true model, which represents the optimal power of generalization value
and, hence, the optimal solution to Problem 1 given enough data.

In order to perform a correct interpretation of the obtained results, we discuss the effect of
fixing Dirichlet’s α = 1 value to sample the parameters of the artificial domains:

• Let C be a clique of the generated MkDG. The value of α = 1 indicates that all the param-
eters associated to the marginal distribution p(XC) have the same probabilities of being
randomly sampled from the Dirichlet distribution. In order words, it has no preference
towards any type of marginal distribution p(XC).

• A fixed value for α allows us to obtain, on average, probability distributions with similar
power of fitting (and generalization) for the different values of k and n. In other words,
on average, the true model obtains similar power of fitting (and generalization) values for
different configurations of k and n. Thus, the power of fitting (and generalization) values
obtained by an algorithm can be considered comparable for different settings, which allows
to perform scalability studies with respect to k and n highlighting its relative merits and
defects.

• A fixed value has consequences in the difficulty of the problem. Let S be a subset of C.
By the aggregation property of the Dirichlet distribution, the marginal distribution p(XS)
can be interpreted as having been generated using a Dirichlet distribution with parameter
α = 2|C\S|. This parameter favors, as k increases, the sampling of more uniform low
order distributions which tends to produce smaller mutual information quantities. In other
words, as k increases, the low order marginal distributions tend to be less informative.
Thus, the problem of learning the MkDG becomes more difficult as k increases: more
edges must be learned using less informative marginal low dimensional distributions.

Figures 13 and 14 summarize the power of fitting and power of generalization obtained with
SK, KA, PFT and SFT with n = 18. SFT can obtain a power of fitting close to the optimum,
given by KA, and similar to SK. This fact highlights that the proposed approach is an effective
alternative to deal with Problem 1. In addition, SFT obtains a power of generalization similar to
SK and close to KA. In this experiment we can observe the converge of the power of fitting and
power of generalization for the different k values.

Figure 15 and 16 show a subset of the obtained results (n ∈ {80, 320, 1280}) with FG, PFT
and SFT, for the sake of brevity. The presented results highlight the main trends observed in the
whole experimentation. The following conclusions can be drawn from the results:

• SFT obtains the best power of fitting results for all configurations of n,N and k. The
average second best results are obtained by FG and the worst results by PFT.

• SFT obtains the best power of generalization results in most configurations of n,N and k.
In additional experiments not shown in this work, we have observed that PFT obtains the
best power of generalization for N = 30, especially for n = 1280.

• As k increases, the differences among the models increase, while the ranking among them
is maintained.
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Figure 13: The evolution of the power of fitting with respect to N ∈ {100, 300, 1000, 3000, 10000} for n = 18 in
domains with MkDG structure. KA represent the optimal solution to Problem 1.
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Figure 14: The evolution of the power of generalization with respect to N ∈ {100, 300, 1000, 3000, 10000} for n = 18
in domains with MkDG structure.

• As n increases, SFT, FG and PFT approaches tend to obtain slightly worse results com-
pared with the true model, which indicates a good scalability with respect to n. As k
increases, the worsening is higher. This is a direct consequence of the choice of the pa-
rameters for the Dirichlet distributions, which creates harder problems as k increases. The
worsening of PFT with respect to k is higher, mainly due to the chain caveat.

• As n increases the differences in terms of power of fitting and power of generalization
between PFT and SFT become smaller. This trend suggests that PFT could reach the
power of fitting and the power of generalization values of SFT in MkDG domains with
higher dimensionality.
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Figure 15: The evolution of the power of fitting with respect to N ∈ {100, 300, 1000, 3000, 10000, 30000} for n ∈
{80, 320, 1280} in domains with MkDG structure.

6.3. Artificial domains without MkDG structure
This section presents results in domains with a sDG structure with a maximum clique size

s = 10. The structures of the randomly generated decomposable models have been generated
using the pseudocode shown in Algorithm 6 in Appendix B. We want to study the effects of the
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Figure 16: The evolution of the power of generalization with respect to N ∈ {100, 300, 1000, 3000, 10000, 30000}
for n ∈ {80, 320, 1280} in domains with MkDG structure.

value of k of the number of variables n and the size of the training set N in domains with a
maximum clique size higher than K ∈ {3, 4, 5}. The experiments have been performed for the
same algorithms and using the parameters described at Section 6.2

The comparison of PFT and SFT against SK and KA in domains with n = 18 random vari-
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Figure 17: The evolution of the power of fitting with respect to N ∈ {100, 300, 1000, 3000, 10000} for n = 18 in
domains without MkDG structure. KA represent the optimal solution to Problem 1.
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Figure 18: The evolution of the power of generalization with respect to N ∈ {100, 300, 1000, 3000, 10000} for n = 18
in domains without MkDG structure.

ables is summarized in Figures 17 and 18. In this experiment we can observe that the optimum
MkDG, given by KA, has obtained a worse result compared with the true model than in the
experiments summarized in Figures 14 and 13. This is a direct consequence of s being greater
than k and of the the Dirichlet aggregation property: as s increases the marginals of order k
tend to be more uniform. In consequence, models with MkDG structure tends to obtain worse
power of fitting values than the true model due to its lower maximum clique size k. Additionally,
due to the same property, the differences among the different models tend to decrease because
the weight associated to the candidate edges is lower. SFT and FG obtain results similar to SK,
which are close to the optimum. As k increases the models obtain better power of generalization
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values given enough data.
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Figure 19: The evolution of the power of fitting with respect to N ∈ {100, 300, 1000, 3000, 10000} for n ∈ 160, 1280
in domains without MkDG structure.

Figures 19 and 20 summarize the results obtained with CL, FG, PFT and SFT for n ∈
{160, 1280}, for the sake of brevity. The experiments show similar trends with n ∈ {80, 160, 320,
640, 1280}. For k = 3, FG, PFT and SFT obtain similar results. SFT and FG obtain quite similar
results in terms of power of fitting and generalization for k ∈ {4, 5}, SFT being slightly better.
As k increases, PFT obtains worse results compared to SFT and FG due to the combined effect
of the chain caveat and the uniformity of the low order marginal distributions. As n increases,
PFT obtains closer results to SFT and FG. This trend is also observed in the domains with an
MkDG structure.

The execution times for different settings of k, n and N are summarized in Figures 21 and 22.
These values have been obtained with a non-parallel implementation of PFT and SFT. PFT is the
most efficient algorithm for all the configurations of k, n and N . It provides times which are very
close to CL. As k increases, the execution time slightly increases for PFT. SFT is slower than FG
in most of the configurations of n, N and k, because it considers more candidate edges and thus
it computes a higher number of mutual information quantities. However, for high dimensional
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Figure 20: The evolution of the power of generalization with respect to N ∈ {100, 300, 1000, 3000, 10000} for
n ∈ {160, 1280} in domains without MkDG structure.

domains, given relatively moderate training data (e.g., n = 2560 and N < 3000), the time
consumed by FG is higher than the time required by SFT for computing the mutual information
quantities due to its computational complexity, which is cubic in n. It should be highlighted that
this effect tends to increase as n increases, since the worst-case computational complexity of
SFT is quadratic in n. We have observed that, for SFT, most of the execution time is consumed
by the P&G procedure. In additional experimentation (not shown in this work), SFT without the
P&G operator obtains similar execution times and better power of fitting than PFT.

6.4. Practical suggestion for determining the parameter k.
This work is focused on learning decomposable models with an MkDG structure using con-

structive procedures guided by the likelihood of the available data (Problem 1). In other words,
the proposed methods are focused on the maximization of the power of fitting given a value k,
which controls the complexity of the learned models. However, in most of the real world appli-
cations, we are interested in models that maximize the likelihood of unseen data, that is, in the
maximization of the power of generalization.
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Figure 21: The evolution of the computational time (in seconds) with respect to n ∈ {80, 160, 320, 640, 1280, 2560}
for N ∈ {30, 10000}.

As we have seen in the performed experiments, often the size of the training data N can
have dramatic effects on the power of generalization and the power of fitting values obtained
by MkDGs for different values of k. Usually, on average, as the size of the training data N
increases, the power of fitting of the learned model decreases, while its power of generalization
increases. For a fixed value k both measures converge to the same value given enough data
and this value tends to be higher as the value of k increases. Unfortunately, as k increases, the
convergence tends to be reached with higher values of N . In real world applications we often
have a limited amount of data and, thus, in order to maximize the power of generalization of the
learned model, we should select k carefully taking into account the particularities of the available
data. We recommend selecting the highest value of k for which the estimated power of fitting
and the estimated power of generalization have similar values.

PFT and SFT have two important features that ease the selection of a good value of the
parameter k: i) They have a low computational complexity in the worst case and they can be
parallelized, and ii) they produce a sequence of MiDGs for i = 2, ..., k. Both features allow us
to select an appropriate value of k by using computational intensive estimates of the power of

31



3 4 5

1

10

100

1000

10000

1

10

100

1000

10000

8
0

2
5
6
0

3
0

1
0
0

3
0
0

1
0
0
0

3
0
0
0

1
0
0
0
0

3
0

1
0
0

3
0
0

1
0
0
0

3
0
0
0

1
0
0
0
0

3
0

1
0
0

3
0
0

1
0
0
0

3
0
0
0

1
0
0
0
0

N

T
i
m
e
 
(
s
) CL

FG

PFT

SFT

Figure 22: The evolution of the computational time (in seconds) with respect to N ∈
{30, 100, 300, 1000, 3000, 10000} for n ∈ {80, 2560}.

generalization, such as repeated holdout, cross-validation and bootstrap among others (Rodríguez
et al., 2013). All of the mentioned estimators take a subset of the available data for learning and
then the learned model is tested on the unobserved data. The process is repeated several times10

and then the estimate of the power of generalization is computed by averaging the obtained
values. With PFT and SFT two different strategies can be used, among others. First, it is possible
to construct an entire sequence of MiDGs for i = 2, .., k, where k can be selected taking into
account the the size of the available data and the available computational resources. Then, we can
estimate the power of generalization of the entire sequence of models and select the parameter
i that maximizes the power of generalization. Secondly, it is possible to estimate the power of
generalization at each growing step and use a stop criterion based on the power of generalization
to determine a good value for the parameter k.

10As the number of repetitions increases, the variance of the estimator is reduced (Rodríguez et al., 2013)
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7. Conclusions

Learning maximum likelihood decomposable models with a maximum clique size of k (Prob-
lem 1) is known to be an NP-hard problem for k > 2. This problem can be solved by learning a
maximal k-order decomposable graph (MkDG).

In this work we have presented the family of the fractal tree algorithms11. These algorithms
are focused on learning MkDGs for dealing with Problem 1 and they have a computational
complexity of O(k · n2). They are based on a divide-and-conquer strategy. Our approaches
divide Problem 1 into k−1 subproblems (see Problem 2), which produces a sequence of MiDGs
for i = 2, .., k, each coarser than the previous one. Additionally, Problem 2 is decomposed
in terms of the separators of the input MiDG (see Problem 3). The subproblems associated
to the separators are efficiently solved using the novel generalized Chow-Liu algorithm. We
have proposed two particular fractal tree algorithms: parallel fractal tree (PFT) and sequential
fractal tree (SFT). PFT solves the separators at each growing step in parallel, while SFT solves
them sequentially taking into account their interactions. In addition, a prune-and-graft procedure
specifically designed for MkDGs has been proposed. This operator increases the mobility of
the leaf vertices and can be used after each growing step of the fractal tree algorithms. In the
experimental section we have measured the power of fitting and the power of generalization using
artificial and real domains. Sequential fractal tree with the prune-and-graft procedure has shown
a better power of fitting and similar power of generalization than PFT (see Section 6). The fractal
tree family of algorithms has shown a competitive behavior for dealing with Problem 1.

All the provided procedures are efficient, modular and can be parallelized using the decom-
position of an MkDGs in terms of its separators. Additionally, the computation of the weights
required to solve each separator problem can be parallelized following the procedure proposed
in (Madsen et al., 2014). Last but not least, they produce a sequence of MiDGs for i = 2, ..., k
which allow us to select the most suitable model for the problem at hand. Due to these features,
we consider that the proposed algorithms are especially suitable for modeling high-dimensional
domains, which is a central aspect of the massive data analysis (Jordan et al., 2013).
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Appendix A: Theoretical results

In this appendix we prove the following results: i) The addition of a candidate edge {u, v} due
to a separator S decreases the entropy of a decomposable model in Î(Xu;Xv|XS), ii) Problem
1 can be solved constructing a sequence of coarser MiDGs, iii) Problem 2 is NP hard, iv) we

11The implementation in Python of the proposed algorithms is publicly available at
https://bitbucket.org/AritzPerez/fractaltree.

33



Table 3: Main concepts

SYMBOL CONCEPT REFERENCE

G[S] Subgraph induced by the set of vertices S Sec. 2.1
G ≺ G+ G+ is coarser than G Def. 1, Sec. 2.1
NG(S) Common neighbor of S Def. 2, Sec. 2.1
G[N(S)] Mantle of S Def. 2, Sec. 2.1
C(G) Set of cliques of G Sec. 2.1
S(G) Set of minimal separators of G Sec. 2.1
Ek(G) Candidate edges that create cliques of size k Def. 4, Sec. 2.1
DG Decomposable graph Sec. 2.1
MkDG, Gk Maximal k-order decomposable graph Def. 5, Sec. 2.1
(k + 1)DG (k + 1)-order decomposable graph Def. 5, Sec. 2.1
dS Degree of the separator S Sec. 2.2
pG Decomposable model associated to G Sec. 2.2
EG(S) Candidate edges due to S in G Def. 7, Sec. 3.1

characterize all the changes that produce the addition of a candidate edge to the set of cliques
and separators of a DG, v) all the separators of size k − 1 of a DG coarser than a given MkDG
are included in the set of separators of the MkDG, vi) any candidate edge that can be added to
a DG coarser than an MkDG, which creates a clique of size k + 1, is a candidate edge due to a
separator of the MkDG, vii) the justification of the separator-based decomposition introduced in
Section 3.1, viii) the addition of an edge to a separator can only modify the mantle of an adjacent
separator, ix) the number of the mutual information quantities computed by a growing step of
PFT and SFT is O(n2) in the worst case, which corresponds to an MkDG with a single separator
x) the ith growing step of the PFT and SFT always produces an M(i + 1)DG and, xi) P&G
procedure constructs an MkDG given an input MkDG with an equal or lower entropy (higher
or equal likelihood). Table 3 summarizes the main concepts required to understand the provided
results.

We start by determining the weight used by GCL.

Proposition 10. Let G = (V,E) be a DG where S is a minimal separator and {u, v} ∈ E(S).
Let G+ = (V,E ∪ {u, v}) be the DG obtained by adding {u, v} to G, and let D be the data set
used to learn the maximum likelihood parameters of the decomposable models associated to G
and G+. The next equality is verified

Ĥ(G)− Ĥ(G+) = Î(Xu;Xv|XS) (2)

where Ĥ(G) = 1
N

∑
x∈D pG(x) is the empirical entropy associated to G and Î(Xu;Xv|XS) =

1
N

∑
x∈D

p̂(xu,xv|xS)
p̂(xu|xS)p̂(xv|xS) is the empirical conditional mutual information.

Proof. The result is directly given by the equality pG+ (x)

pG(x) = p̂(xu,xv|xS)
p̂(xu|xS)p̂(xv|xS) for any x

The next result indicates that Problem 1 can be solved by constructing a sequence of coarser
MiDGs, for i = 2, ..., k.
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Proposition 11 (Lemma 2.21, Lauritzen (1996)). Given a DG, it is possible to construct any
coarser DG by adding a sequence of candidate edges.

This result states that, without loss of generality, any coarser DG can be obtained by con-
structing a sequence of coarser DGs which differ exactly in one candidate edge. As a direct con-
sequence, for any MkDG Gk there is at least a sequence of MiDG structures, Gi for i = 2, ..., k,
starting from the empty graph, where G2 ≺ G3 ≺ ... ≺ Gk−1 ≺ Gk. According to this result,
Problem 1 could be solved by solving a sequence of Problems 2.

Unfortunately, Problem 2 is still NP-hard and we propose an efficient approach to this prob-
lem based on the separator-based decomposition described in Section 3.1.

Corollary 12. Problem 2 is NP-hard for k > 1.

Proof. The proof is equivalent to the proofs for Problem 1 provided in Srebro (2000), Theorem
4.1, and in Srebro (2003), Corollary 3.

Next, we describe the modifications that are produced by the addition of a candidate edge to a
decomposable graph in terms its cliques and separators. This result is closely related to Theorem
4.2 in (Desphande et al., 2001).

Theorem 13. Let G be a DG with the candidate edge {u, v} due to S and let G+ be the DG
obtained from G by adding {u, v}. G+ fulfills the following properties:

i) C(G+) \ C(G) = {S ∪ {u, v}}
ii) C(G) \ C(G+) ⊆ {S ∪ {u}, S ∪ {v}}

iii) S(G+) \ S(G) ⊆ {S ∪ {u}, S ∪ {v}}
iv) S(G) \ S(G+) ⊆ {S}

where {u, v} is a candidate edge due to S in G.

Proof. First, it should be noted that, by Theorem 4, there exists a set of vertices S that is the
minimal separator of u and v where {u, v} ⊆ NG(S). Thus, there exists a chain of cliques
C1, ..., Ci, Ci+1, ...Cm for the DG G, where Ci∩Ci+1 = S, S∪{u} ⊆ Ci and S∪{v} ⊆ Ci+1.

Claim (i) is directly given in Theorem 4. From here on we denote S ∪ {u, v} by C.
By claim (i), C(G+) can not contain any proper subset of S ∪{u, v}. Since Ci and Ci+1 are

cliques for G, then C(G) can not contain any proper subset of S ∪ {u} and S ∪ {v}. Besides,
C(G) can not contain any superset of {u, v} because the edge {u, v} is not included in G.
Therefore, the unique maximal cliques that can be removed from C(G) by the addition of {u, v}
to G are S ∪ {u} and S ∪ {v}, which proves the claim (ii).

By claims (i) and (ii), we can conclude that it is possible to define one of the next chains
of cliques for G+: I) C1, ..., Ci, C, Ci+1, ...Cm if and only if S ∪ {u} ⊊ Ci and S ∪ {v} ⊊
Ci+1; II) C1, ..., Ci−1, C, Ci+1, ...Cm if and only if S ∪ {u} = Ci and S ∪ {v} ⊊ Ci+1;
III) C1, ..., Ci, C, Ci+2, ...Cm if and only if S ∪ {u} ⊊ Ci and S ∪ {v} = Ci+1; and IV)
C1, ..., Ci−1, C, Ci+2, ...Cm if and only if S ∪ {u} = Ci and S ∪ {v} = Ci+1. Therefore, the
changes in the sets of separators of G due to the addition of {u, v} are given by the intersections
of Ci, C and Ci+1. In chains I) and III) the separator S ∪ {u} appears in the list of separators
associated and in chains I) and II) the separator S∪{v} appears in the list of separators associated,
which proves claim (ii). In the four chains of cliques that can be generated for G+, the times that
the separator S appears in its associated list of separators is reduced in one, which proves claim
(iv).
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The first claim describes the clique that is created after the addition of a candidate edge, the
second the cliques that could be removed from the coarser structure, the third determines the
separators that could be produced and the fourth the separators that could be removed.

Since the separators are a central aspect of FT, we now introduce a result that describes the
separators that can be found in a DG coarser than a given DG.

Corollary 14. Let G be a DG and G+ be a coarser DG, then the set of separators of G+ is a
subset of the set {S+ : exists S ∈ S(G) where S ⊆ S+}.

Proof. It follows directly from Proposition 11 and the recursive application of Theorem 13 (iii).

In other words, a separator of a coarser DG belongs to the set of separators of the thinner DG
or is a superset of one of its separators.

Next we prove that the cliques of a DG coarser than an MkDG are of equal size or higher
than k and the cliques of size k are included in the MkDG.

Corollary 15. Let G be an MkDG and G+ be a coarser DG, then

i) the cliques of G+ are of equal size or higher than k, and

ii) the cliques of size k of G+ are included in the set of cliques of Gk.

Proof. By Theorem 6, Proposition 11 and Corollary 14 we know that all of the separators of G+

are of size equal to or higher than k − 1. Thus, by Theorem 4 the addition of a candidate edge
can only generate cliques of size higher than k, which proves claim i). Furthermore, if no clique
of size k can be created then all the cliques of size k must be contained in the set of cliques of
G, which proves claim ii).

Now we focus on describing how to solve Problem 2. To do this we have to characterize the
edges whose addition creates cliques of size k+1. By Theorem 4 these edges are determined by
the candidate edges due to separators of size k− 1 (see Section 3). Thus, in order to consider all
the M(k+1)DGs coarser than a given MkDG, Gk, we need to identify all the separators of size
k − 1 of any (k + 1)DG coarser than Gk.

Corollary 16. Let G be an MkDG and G+ be a coarser DG, then all the separators of size
k − 1 of G+ are contained in the set of separators of G.

Proof. It follows directly from Theorem 6 and Corollary 14.

The next result characterizes each candidate edge of an MkDG or any coarser DG that creates
cliques of size k + 1.

Corollary 17. Let G be an MkDG and G+ be a DG coarser than (or equal to) G. Then,
Ek+1(G

+) = ∪S∈S(G)EG+(S).

Proof. It is a direct consequence of Theorem 4, Definition 7, Corollary 16 and the fact that
Ek+1(G

+) consists of the candidate edges that create cliques of size k + 1.

The previous result tells us that all the candidate edges Ek+1(G
+) can be determined effi-

ciently by a local inspection of the mantles of the separators of the MkDG G.
Next we characterize the mantles of an MkDG, a coarser (k + 1)DG and a coarser M(k +

1)DG. This characterization justifies the use of the separator-based decomposition induced by
the set of separators of an MkDG for approximating Problem 2.
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Proposition 18. Let Gk be an MkDG, G+ be a (k + 1)DG coarser than Gk and Gk+1 be a
coarser M(k + 1)DG. Then

i) the mantle of any S ∈ S(Gk) in Gk, Gk[N(S)], is the empty graph,
ii) the mantle of any S ∈ S(Gk) in G+, G+[N(S)], is a forest, and

iii) the mantle of any S ∈ S(Gk) in Gk+1, Gk+1[N(S)], is a tree.

Proof. We prove i), ii) and iii) by contradiction.
i) Assume, the contrary, that there is an edge {u, v} in the mantle of a separator S of Gk.

Since we know that all the separators are of size k−1, Gk has the clique {u, v}∪S of size k+1.
However, this contradicts the fact that all the cliques of an MkDG are of size k. Therefore, all
the mantles are the empty graph.

ii) Assume, the contrary, that there exists a set S ∈ S(Gk) of size k−1 with a clique C of size
greater than 2 in its mantle. Then G+ has the clique C ∪ S of size greater than k + 2. However,
we know that G+ is a (k + 1)DG and we know that the maximum clique size is k + 1, but this
contradicts the fact that C is of size greater than 2. Thus, the mantle of any set S ∈ S(Gk) in
G+ has cliques up to size 2. By Corollary 2.8 in Lauritzen (1996) we know that any mantle in a
decomposable graph is also a decomposable graph and, therefore, the mantle is a forest.

iii) By Definition 5, M(k+1)DGs are special cases of (k+1)DGs for which the addition of
a candidate edge produces a clique of a size higher than k+1. Thus by (ii) we know that for any
S ∈ S(Gk) we have that the mantle of Si in Gk+1 is a forest.

We prove that the forest is a tree by contradiction. Let us assume that the mantle of S is not
a tree. Then at least the mantle of S has two distinct connected components. We can take any
vertex u from one connected component and any vertex v from another connected component.
Since u and v are separated by S and they belong to its common neighborhood, the edge {u, v} is
a candidate edge by Theorem 4. And, by Theorem 13 (i), the addition of {u, v} to Gk+1 creates
a clique of size k + 1 which contradicts Definition 5. Therefore, all the mantles are trees.

It should be noted that the graph induced by a separator S and its common neighbors N(S),
i) is an MkDG when the mantle of S is the empty graph, ii) is a (k+ 1)DG when the mantle is a
forest, and iii) is an M(k + 1)DG when the mantle is a tree.

Next, we show when and how the addition of an edge to the mantle of a separator could only
affect the mantles of adjacent separators. This result is used by PFT in order to determine the
interactions between the separators due to edge additions.

Proposition 19. Let G = (V,E) be an MkDG or a (k + 1)DG coarser than an MkDG. Let S
and S′ be two separators of size k − 1 in G, and let {u, v} be a candidate edge due to S. The
addition of {u, v} to G modifies the mantle of S′ if and only if u (or v) is contained in S′ and
S \ S′ = {w}. If u ∈ S′ then the vertex v and the edge {v, w} are added to the mantle of S.

Proof. Let G+ be the graph obtained by adding {u, v} to G. By Theorem 4, {u, v} ⊆ NG(S)
and the clique C = S ∪ {u, v} of size k + 1 is created in G+. By Theorem 13 C is the
unique clique created by the addition of {u, v} and no more separators of size k − 1 are created.
Therefore, we concentrate in the modifications that cause C.

We start by proving A ⇒ B. Let us assume that u ∈ S′ and S \ S′ = {w}:

• Since |S| = |S′| and u /∈ S, we have that S′ ∪ {w} = S ∪ {u}. Then w ∈ NG(S′) and
thus w belongs to the mantle of S′ in G′.
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• Since S′ ∪ {w} = S ∪ {u} we have that C \ S′ = {v, w}. Then {v, w} ⊆ NG+(S′) and,
thus, the vertices v and the edge {v, w} is added to the mantle of S′ in G+.

We conclude by proving ¬A⇏ ¬B:

• Let us assume that u is not contained in S. Then S′ ̸⊂ S ∪ {u} because S′ and S differ
at least in one element, |S| = |S′| = k − 1 and u /∈ S′. Thus, u is not part of the mantle
of S in G nor in G+. The same argument hold if we assume that v is not contained int S.
Therefore, the mantle of S′ is not modified by the addition of {u, v}.

• Let us assume that S \ S′ = R with |R| > 1. Note that {u, v} ⊈ S′ because S′ is a
complete set in G. Then S′ ⊈ S ∪ u because S and S′ differs at least in two elements and
|S| = |S′| = k − 1. Thus, u is not part from the mantle of S in G nor in G+. The same
argument hold for v. Therefore, the mantle of S′ is not modified by the addition of {u, v}.

It should be noted that the addition of the edge {u, v} to the mantle of S can only produce
modifications to the mantle of an adjacent separator S′ by adding the new vertex u and the edge
{u,w}, where {w} = S \ S′. Therefore the mantle of S′ is a forest with the same number of
connected components than in G. Clearly, the addition of an edge to a mantle of a separator
increases or keeps equal the candidate edges due to adjacent separators.

The following results guarantee that the sets of candidate edges due to different separators
are disjoint during the execution of the (parallel and sequential) growing step of the family of
fractal tree algorithms.

Proposition 20. Let G be a DG and let G+ be an equal or coarser DG. Let S and R be two
separators of G, where S ⊈ R. Then EG(S) ∩ EG+(R) = ∅.

Proof. We prove this result by contradiction. Let us assume that {u, v} ∈ EG(S) ∩ EG+(R)
exists. If S ⊈ R, then s exists, where s ∈ S \ R. By Definition 7, u and v are separated by
S in G and by R in G+. Besides, by the same definition, u and v belong to the mantle of S in
G and, then G includes the edges {u, s} and {s, v}. Thus, G has the path u, s, v. Since G+ is
coarser than G, we have that R does not separate u and v in G+. Therefore, by Definition 7,
{u, v} ̸∈ EG+(R), which contradicts the initial assumption.

Next, we prove that the number of mutual information quantities computed by the growing
steps of the FT algorithm are

(
n−k+1

2

)
, in the worst case. Since the computational complexity of

the fractal tree family of algorithms is dominated by the computation of the mutual information
quantities, this result can be used in order to determine the computational complexity of the
fractal tree family of algorithms in the worst case (see Section 4.5).

Corollary 21. Given an MkDG with n vertices, the growing step of the fractal tree family of
algorithms requires to compute

(
n−k+1

2

)
, in the worst case. The worst case corresponds to an

MkDG with a single separator.

Proof. The amount of mutual information quantities that a growing step computes is the sum
of the number of candidate edges due to the different separators considered by the procedure.
The growing steps only consider the separators of the MkDG, which are of size k − 1. Every
pair of distinct separators S and R of the MkDG satisfy that R ⊈ S and S ⊈ R. Therefore,
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by Proposition 20, we know that the sets of candidate edges due to two different separators are
disjoint for the parallel and sequential growing steps. In other words, a candidate edge can be
considered only due to a single separator.

By Theorem 6, an MkDG has n− k + 1 cliques of size k and, by Theorem 4, we know that
this set of cliques has been obtained from a thinner M(k−1)DG by adding n−k+1 (candidate)
edges. Therefore, an MkDG has

∑k
i=2 n − i + 1 edges out of the

(
n
2

)
possible edges. Thus, in

the worst case, at most
(
n
2

)
−

∑k
i=2 n− i+ 1 =

(
n−k+1

2

)
mutual information quantities can be

computed in a growing step. The worst case corresponds to the number of mutual information
quantities computed for an MkDG with a single separator, which has n − k + 1 vertices in its
mantle.

In the next results, we prove that the fractal tree family of algorithms produces a sequence
of MiDG for i = 2, .., k. For this purpose we demonstrate that the ith growing step produces an
M(i+ 1)DG given an input MiDG. It should be noted that the growing procedures of FT create
trees in all the mantles of all the separators of a given MiDG.

Proposition 22. Let G be an MkDG or a (k + 1)DG coarser than an MkDG with a separator
S of size k− 1. Let E be a (non-empty) set of edges that is added to G to form G+, where i) E is
a subset of the candidate edges due to S in G, and ii) the mantle of S in G+ is a tree. Then G+

is a (k + 1)DG where C(G+) \ C(G) = {S ∪ {u, v} : {u, v} ∈ E}.

Proof. First, we prove that G+ is a DG and then we prove that it is a (k + 1)DG.
By Proposition 18, the mantle of S is a forest in G with at least two connected components

because it is a separator in G. By Definition 7, G has at least one candidate edge due to S. Thus,
there exists a (non-empty) set of candidate edges due to S in G, E , where its addition to G forms
G+ and generates a mantle of S with tree structure.

Let {u, v} ∈ E . If we add any subset of E to G that does not contain {u, v} to form G−,
then u and v will belong to different connected components in the mantle of S in G−. Then, by
Definition 7, {u, v} ∈ EG−(S) and, by Corollary 17, {u, v} ∈ Ek(G

−). In other words, the
addition of any subset of E to G that does not contain {u, v} creates a DG for which {u, v} is a
candidate edge. Therefore, the addition of E to G can be understood as a sequential addition of
candidate edges due to S and then, by Proposition 11, G is a DG.

Finally, by Theorem 13 (i), a candidate edge {u, v} ∈ E due to S creates the clique S∪{u, v}
of size k + 1. Therefore, G+ is a (k + 1)DG with the set of cliques {S ∪ {u, v} : {u, v} ∈ E}
not contained in the set of cliques of G.

Theorem 23. Let G0 be a MkDG with separators S1, ..., Sl. Let Gl be a graph coarser than G0

that has been obtained by constructing a sequence of graphs G0,G1, ...,Gl. Gi for i = 1, ..., l
has been obtained from Gi−1 by adding a (non-empty) set of candidate edges Ei due to Si, where
its addition to Gi−1 generates a mantle of Si with tree structure. Then Gl is an M(k + 1)DG.

Proof. First, we prove by induction over j, for j = 1, .., l, that Gl is a (k+ 1)DG, for which the
mantles of S1, ..., Sl are trees. Then we prove that, hence, Gl is an M(k + 1)DG.

Let j = 1. G1 has been obtained from G0 by adding a set of candidate edges E1 due to S
in G0, where the mantle for S1 in G1 is a tree. By Proposition 22, G1 is a (k + 1)DG. The
addition of E1 to G0 can cause the modification of the mantles of other separators. However, by
Proposition 18 (ii), the mantles of S2, ..., Sl in G1 are forests and they have the same number of
connected components as in G0 –at least two.

39



Let j = i, we assume that Gi is a (k + 1)DG, the mantles of S1, ..., Si are trees in Gi and
the mantles of Si+1, ..., Sl in Gi are forests with at least two connected components. Thus, there
exists a (non-empty) subset of candidate edges Ei+1 due to Si+1 in Gi, whose addition to Gi

creates Gi+1, and the mantle of Si+1 in Gi+1 is a tree. By Proposition 22, Gi+1 is a (k+1)DG.
Again, by Proposition 18 (ii), the mantles of S1, ..., Si are trees in Gi+1. Besides, by the same
proposition the mantles of Si+2, ..., Sl are forests in Gi+1 with the same number of connected
components as in Gi –at least two.

By the principle of induction, Gl is a (k+1)DG for which the mantles of S1, ..., Sl are trees.
Next, we prove that all the cliques of Gl are of size k+1 and that the addition of a candidate

edge to Gl creates a clique of a size higher than k + 1, which by Definition 5 proves that Gl is
an M(k + 1)DG. We know that mantle of Si for i = 1, ..., l in Gl is a tree. A tree has a single
connected component and, thus, all the vertices in the mantle of Si are included in at least one
edge from the mantle. Besides, by the definition of chain of cliques, we know that for any clique
C in G0 we have (at least) one separator S ∈ {S1, .., Sl} where C = S ∪ {u}. Then, all the
cliques of G0 are included in at least one clique of size k+1 of Gl. And therefore, all the cliques
of Gl are of size k + 1.

In addition, since the mantle of Si for i = 1, ..., l in Gl is a tree, by Definition 7, the set of
candidate edges due to Si in Gl is empty. Then, by Theorem 6 (ii), Corollary 16 and Corollary
17, the set of candidate edges for Gl that create cliques of size k+1 is empty. Thus, the addition
of a candidate edge to Gl creates a clique of a size greater than k + 1. Therefore, by Definition
5, Gl is an M(k + 1)DG.

This result closely resembles the sequential growing step of SFT but it can be directly applied
to the parallel growing step of PFT. PFT does not take into account the interactions among the
separators. However, by Proposition 19 the interactions among the mantles of the separators can
only increase the set of candidate edges due to a separator. Thus, the parallel growing step can
also produce a sequence of structures by constructing trees at each separator sequentially.

Finally, we prove that pruning a leaf vertex12 from a given MkDG and grafting it into a
separator produces an MkDG.

Proposition 24. Let G be an MkDG with a leaf u that belongs to the clique S∪{u}. If we prune
u from S and then we graft u into a separator S′ of G (possibly S′ = S), we produce an MkDG
with an entropy reduced by Î(Xu;XS′)− Î(Xu;XS).

Proof. We start by proving that pruning a leaf vertex from its separator and grafting it in a sepa-
rator produces an MkDG. Let u be a leaf vertex of the clique C which belongs to the separator S,
then C = S ∪ {u}. Due to Corollary 2.8 in (Lauritzen, 1996), the subgraph induced by V \ {v},
G−, is a decomposable graph. Moreover, all the cliques of G− are of size k − 1 and all of
its separators of size k − 1. Then, by Definition 5, it is an MkDG. If we choose any possible
separator S′ in the graph G− and we create the clique S′∪{u} to form G′, then by Lemma 2.19
in (Lauritzen, 1996) G′ is a decomposable graph. In addition, all its cliques are of size k and all
of its separators are of size k − 1. Therefore, by Definition 5, is an MkDG.

Next, we prove the reduction in the entropy produced by pruning and grafting u. The pruning
of u from the separator S, reduces the entropy of the model in Ĥ(Xu|XS) =
Ĥ(Xu) − Î(Xu;XS), where Ĥ and Î denote the empirical entropy and mutual information

12i.e., a vertex that belongs to a single clique
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respectively. To graft u in S′ increases the entropy of the graph in Ĥ(Xu|XS′) = H(Xu) −
Î(Xu;XS′). Therefore, after pruning u from S and grafting into S′, the entropy of the structure
is reduced on Î(Xu;X

′
S)− Î(Xu;XS).

In consequence, P&G (see Algorithm 3) produces an MkDG structure with an equal or lower
entropy or, in other words, an equal or higher likelihood.

Appendix B: Artificial domains

Algorithm 5 shows the pseudocode of theprocedure used to generate the artificial domains
with MkDG structure used in the experiments of Section 6.2.

Algorithm 5. (MkDG random generator)
Input: n and k.
Output: An MkDG.
Pseudocode:

1. C = {{1, ..., k}}
2. For i = k + 1, ..., n

3. -Take a clique C at random from C
4. -Take a subset S of size k − 1 from C at random.

5. -C = C ∪ {S ∪ {i}}
6. return (V,E) where V = {1, ..., n} and E = {{u, v} : ∃C ∈ C, where {u, v} ⊆ C}

Algorithm 5 shows the pseudocode of theprocedure used to generate the artificial domains
with sDG structure used in the experiments of Section 6.3.

Algorithm 6. (sDG random generator)
Input: n and s.
Output: An sDG.
Pseudocode:

1. C = {1, ..., rand(2, ..., s)}, remain = {1, ..., n} \ C and C = {C}
2. While remain ̸= ∅
3. -Take a clique C at random from C
4. -Take a subset S of size rand(1, ..., |C| − 1) from C at random

5. -Take a subset R size rand(1, ..., s− |S|) from remain at random

6. -C = C ∪ {S ∪R} and remain = remain \R

7. return (V,E) where V = {1, ..., n} and E = {{u, v} : ∃C ∈ C, where {u, v} ⊆ C}
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