Hölder equivalence of complex analytic curve singularities

Alexandre Fernandes, J. Edson Sampaio and Joserlan P. Silva

Abstract

We prove that if two germs of irreducible complex analytic curves at $0 \in \mathbb{C}^2$ have different sequence of characteristic exponents, then there exists $0 < \alpha < 1$ such that those germs are not α-Hölder homeomorphic. For germs of complex analytic plane curves with several irreducible components we prove that if any two of them are α-Hölder homeomorphic, for all $0 < \alpha < 1$, then there is a correspondence between their branches preserving sequence of characteristic exponents and intersection multiplicity of pair of branches. In particular, we recover the sequence of characteristic exponents of the branches and intersection multiplicity of pair of branches are Lipschitz invariant of germs of complex analytic plane curves.

1. Introduction

The recognition problem of embedded topological equivalence of germs of complex analytic plane curves at $0 \in \mathbb{C}^2$ has a complete solution due to K. Brauner, W. Burau, Khäler and O. Zariski (See [3]). For instance, for irreducible germs (branches), it is shown that any two of them are topological equivalent if, and only if, they have the same sequence of characteristic exponents. For germs of complex analytic plane curves with several irreducible components (several branches), it is shown that any two of them are topological equivalent if, and only if, there is a correspondence between their branches preserving sequence of characteristic exponents of branches and intersection multiplicity of pair of branches. In [9], F. Pham and B. Teissier proved that if two germs of complex analytic plane curves at $0 \in \mathbb{C}^2$, let us say X and Y, are topological equivalent as germs embedded in $(\mathbb{C}^2, 0)$ (i.e. there exists a bijection between their branches preserving sequence of characteristic exponents and intersection multiplicity of pair of branches), then there exists a germ of meromorphic bi-Lipschitz homeomorphism

$$\phi: (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^2, 0)$$

such that $\phi(X) = Y$. Actually, Pham and Teissier proved the respective converse result exactly as it is stated below. Other versions of this result can be seen in [4] and [7].

Theorem 1.1 Pham-Teissier. *If there exists a germ of meromorphic bi-Lipschitz homeomorphism $\phi: X \rightarrow Y$ (not necessarily from \mathbb{C}^2 to \mathbb{C}^2), then there exists a correspondence between their branches preserving sequence of characteristic exponents and intersection multiplicity of pair of branches.*

2000 Mathematics Subject Classification 14B05 (primary), 32S50 (secondary).

The first named author was partially supported by CNPq-Brazil grant 304221/2017-1.

The second named author was partially supported by the ERCEA 615655 NMST Consolidator Grant and also by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323.

The third named author was partially supported by CAPES and CNPq-Brazil.
Next, we are going to define the notion of α-Hölder equivalence of germ of subsets in Euclidean spaces, where α is a positive real number. Let us remind that a mapping $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is called α-Hölder if there exists a positive real number C such that
\[
\|f(p) - f(q)\| \leq C\|p - q\|^\alpha \quad \forall \, p, q \in U.
\]

Definition 1. Let (X, x_0) and (Y, y_0) be germs of Euclidean subsets. We say that (X, x_0) is α-Hölder homeomorphic to (Y, y_0) if there exists a germ of homeomorphism $f: (X, x_0) \to (Y, y_0)$ such that f and its inverse f^{-1} are α-Hölder mappings. In this case, f is called a bi-α-Hölder homeomorphism from (X, x_0) onto (Y, y_0).

Remark 1. Let us remark that bi-1-Hölder homeomorphisms from (X, x_0) onto (Y, y_0) are nothing else than bi-Lipschitz homeomorphisms. Moreover, if (X, x_0) is α_0-Hölder homeomorphic to (Y, y_0) for some $0 < \alpha_0 \leq 1$, then (X, x_0) is α-Hölder homeomorphic to (Y, y_0) for any $0 < \alpha \leq \alpha_0$.

One of the goals of this paper is to prove that for any pair C and \tilde{C} of germs of irreducible complex analytic curves at $0 \in \mathbb{C}^2$ with different sequence of characteristic exponents, there exists $0 < \alpha < 1$ such C and \tilde{C} are not α-Hölder homeomorphic (see Theorem 4.1). Let us give an idea of the proof. Let us suppose that C and \tilde{C} have, respectively, the following characteristic pairs $(n_1, m_1), (n_2, m_2), \ldots, (n_g, m_g)$ and $(q_1, l_1), (q_2, l_2), \ldots, (q_g, l_g)$. Then, we define the following rational number
\[
k_{ij}(C, \tilde{C}) = \min\{\frac{m_j \cdot q_1 \cdots q_i + l_i \cdot m_1 \cdots m_j}{2 \cdot l_i \cdot n_1 \cdots n_j}, \frac{m_j \cdot q_1 \cdots q_i + l_i \cdot m_1 \cdots m_j}{2 \cdot m_j \cdot q_1 \cdots q_i}\}.
\]

In the case where $g \neq \tilde{g}$, we show in Lemma 4.2 that there is no bi-α-Hölder homeomorphism $F: (C, 0) \to (\tilde{C}, 0)$, with $\alpha_0 < \alpha < 1$, where $\alpha_0 < 1$ is the positive number such that
\[
\alpha_0^4 = \max\{k_{ij}(C, \tilde{C}) < 1; i = \tilde{g} \leq j \leq g \text{ or } j = g \leq i \leq \tilde{g}\}
\]

Now, in the case where $g = \tilde{g}$, we prove in Lemma 4.3 that if there exists $1 \leq i \leq g$ such that $k_{jj}(C, \tilde{C}) < 1$, then there is no bi-α-Hölder homeomorphism $F: (C, 0) \to (\tilde{C}, 0)$, with $\alpha_0 < \alpha < 1$, where $\alpha_0 = k_{jj}(C, \tilde{C})^\frac{1}{4}$. Thus, we argue by contradiction in Theorem 4.1 i.e., if C and \tilde{C} are bi-α-Hölder homeomorphic for all $0 < \alpha < 1$, we show that C and \tilde{C} have the same sequence of characteristic exponents.

For germs of complex analytic plane curves at $0 \in \mathbb{C}^2$, C and \tilde{C}, with two branches, we prove that if the contact of their branches are different, then there exists $0 < \alpha < 1$ such C and \tilde{C} are not bi-α-Hölder homeomorphic. In particular, we show that if two germs of complex analytic plane curves at $0 \in \mathbb{C}^2$, C and \tilde{C}, are bi-α-Hölder homeomorphic for all $0 < \alpha < 1$, then C and \tilde{C} are bi-Lipschitz homeomorphic. Let us remark that these results generalize Theorem of Pham-Teissier and its versions in [4] and [7], see Corollary 4.7 and Corollary 4.8.

Finally, in Example 4 we present a subset of \mathbb{R}^2 definable on the o-minimal structure $(\mathbb{R}_{an}, \exp, \log)$ which is bi-α-Hölder homeomorphic to $(\mathbb{R}, 0)$ for all $0 < \alpha < 1$, but it is not bi-Lipschitz homeomorphic to $(\mathbb{R}, 0)$.
2. Contact between sets

Let us begin by establishing some notations. Given two nonnegative functions \(f \) and \(g \), we write \(f \lesssim g \) if there exists some positive constant \(C \) such that \(f \leq Cg \). We also denote \(f \approx g \) if \(f \lesssim g \) and \(g \lesssim f \). If \(f \) and \(g \) are functions on \((X, x_0)\), we write \(f \ll g \) if \(g^{-1}(0) \subset f^{-1}(0) \) and \(\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \).

Let \(\Gamma_1, \Gamma_2 \) be germs of closed subsets at 0 \(\in \mathbb{R}^n \) such that \(\Gamma_1 \cap \Gamma_2 = \{0\} \). For \(r > 0 \) sufficiently small, let us define

\[
f_{\Gamma_1, \Gamma_2}(r) = \inf \{ \| \gamma_1 - \gamma_2 \| \mid \gamma_i \in \Gamma_i \text{ and } \| \gamma_i \| \geq r; \ i = 1, 2 \}.
\]

Definition 2. The contact of \(\Gamma_1 \) and \(\Gamma_2 \) is defined as follows

\[
\text{Cont}(\Gamma_1, \Gamma_2) = \lim_{r \to 0^+} \frac{\log(f_{\Gamma_1, \Gamma_2}(r))}{\log(r)}.
\]

Remark 2. We see that \(f_{\Gamma_1, \Gamma_2} \) is a nonincreasing monotone function, hence the function

\[
r \mapsto \frac{\log(f_{\Gamma_1, \Gamma_2}(r))}{\log(r)} \quad r > 0 \text{ small enough}
\]

is a nondecreasing monotone function. Therefore, \(\text{Cont}(\Gamma_1, \Gamma_2) \) is well defined, although it may occur \(\text{Cont}(\Gamma_1, \Gamma_2) = +\infty \).

In this paper, we shall be interested in pair of germs \(\Gamma_1 \) and \(\Gamma_2 \) at 0 \(\in \mathbb{R}^n \) where

\[
\Gamma_i \cap \{ x \in \mathbb{R}^n : \| x \| = r \} \quad i = 1, 2
\]

is not empty for \(r > 0 \) small enough. In such a case, we have the following well defined function germ at 0 \(\in \mathbb{R}^n \), namely:

\[
g_{\Gamma_1, \Gamma_2}(r) = \inf \{ \| \gamma_1 - \gamma_2 \| \mid \gamma_i \in \Gamma_i \text{ and } \| \gamma_i \| = r; \ i = 1, 2 \}.
\]

Moreover, in this case, \(f_{\Gamma_1, \Gamma_2}(r) \leq g_{\Gamma_1, \Gamma_2}(r) \leq 2r \) for all \(r \) and, in particular,

\[
\frac{\log(f_{\Gamma_1, \Gamma_2}(r))}{\log(r)} \geq \frac{\log(2r)}{\log(r)}, \quad \text{for all } r \text{ sufficiently small.}
\]

Hence, \(\text{Cont}(\Gamma_1, \Gamma_2) \) is at least 1, since \(\lim_{r \to 0^+} \frac{\log(2r)}{\log(r)} = 1 \).

Given a germ of nonzero subanalytic function \(f(r) \) at 0 \(\in \mathbb{R} \), we know that there exist a positive rational number \(\beta \) and a nonzero real number \(a \) such that

\[
f(r) = ar^\beta + o(r^\beta),
\]

where \(g(r) = o(r^\beta) \) means that \(\lim_{r \to 0^+} \frac{g(r)}{r^\beta} = 0 \). So, we denote \(\text{ord}_0 f = \beta \).

Example 1. Let \(\Gamma_1, \Gamma_2 \subset \mathbb{R}^n \) be 1-dimensional subanalytic sets such that \(\Gamma_1 \cap \Gamma_2 = \{0\} \). Then, \(f_{\Gamma_1, \Gamma_2} \) and \(g_{\Gamma_1, \Gamma_2} \) are subanalytic functions and by Order Comparison Lemma in [1],

\[
\text{Cont}(\Gamma_1, \Gamma_2) = \text{ord}_0 f_{\Gamma_1, \Gamma_2}(r) = \text{ord}_0 g_{\Gamma_1, \Gamma_2}(r).
\]

In particular, \(f_{\Gamma_1, \Gamma_2} \approx g_{\Gamma_1, \Gamma_2} \).

In other words, the example above shows that if \(\gamma_1, \gamma_2 : [0, \varepsilon] \to \mathbb{R}^n \) are two continuous subanalytic curves such that \(\| \gamma_1(t) \| = \| \gamma_2(t) \| = t \) for all \(t \in [0, \varepsilon] \) and \(\Gamma_i = \gamma_i([0, \varepsilon]) \), for \(i = 1, 2 \), then \(\text{Cont}(\Gamma_1, \Gamma_2) = \text{ord}_0 \| \gamma_1(t) - \gamma_2(t) \| \).

We also have an Order Comparison Lemma in higher dimension.
PROPOSITION 2.1. Let \(C \) and \(\tilde{C} \) be two germs of closed subanalytic subsets at \(0 \in \mathbb{R}^n \) such that \(C \cap \tilde{C} = \{0\} \). Then, \(f_{C_1,C_2} \) and \(g_{C_1,C_2} \) are subanalytic functions and \(\text{Cont}(C_1,C_2) = \text{ord}_0 f_{C_1,C_2}(r) = \text{ord}_0 g_{C_1,C_2}(r) \).

Proof. Since \(C_1 \) and \(C_2 \) are germs of closed subanalytic subsets, it is clear that \(f_{C_1,C_2} \) and \(g_{C_1,C_2} \) are subanalytic functions. Then, the subset

\[
A = \{(x,y,r) \in \mathbb{R}^n \times \mathbb{R}^n \times (0,\infty); x \in C_1, y \in C_2, f(r) = \|x - y\|, \text{ and } \|x\|, \|y\| \geq r\}
\]

is a subanalytic subset as well and by Tarski-Seidenberg Theorem, there are two 1-dimensional subanalytic sets \(\Gamma_1 \subset C_1 \) and \(\Gamma_2 \subset C_2 \) such that \(\Gamma_1 \cap \Gamma_2 = \{0\} \) and

\[
f_{\Gamma_1,\Gamma_2}(r) = f_{C_1,C_2}(r), \text{ for all } r > 0 \text{ small enough.} \tag{2}
\]

From the other hand, by Order Comparison Lemma in \([1]\), we know that

\[
f_{\Gamma_1,\Gamma_2} \approx g_{\Gamma_1,\Gamma_2}. \tag{3}
\]

Thus,

\[
f_{C_1,C_2} \overset{(2)}{=} f_{\Gamma_1,\Gamma_2} \overset{(3)}{=} g_{\Gamma_1,\Gamma_2} \geq g_{C_1,C_2}.
\]

Since we already knew that \(g_{C_1,C_2} \geq f_{C_1,C_2} \), it is proved that \(g_{C_1,C_2} \approx f_{C_1,C_2} \).

\(\square \)

EXAMPLE 2. Let \(C \) and \(\tilde{C} \) be two germs of complex analytic curves at the origin of \(\mathbb{C}^2 \). Then, \(f_{C,\tilde{C}} \) and \(g_{C,\tilde{C}} \) are subanalytic functions and \(\text{Cont}(C,\tilde{C}) = \text{ord}_0 f_{C,\tilde{C}}(r) = \text{ord}_0 g_{C,\tilde{C}}(r) \).

PROPOSITION 2.2. Let \(X \) and \(Y \) be two germs of Euclidean closed subsets at \(0 \) and let \(h: (X,0) \to (Y,0) \) be an \(\alpha \)-Hölder homeomorphism. If \(\Gamma_1, \Gamma_2 \subset X \) are closed and \(\Gamma_1 \cap \Gamma_2 = \{0\} \) then

\[
\alpha^2 \text{Cont}(h(\Gamma_1),h(\Gamma_2)) \leq \text{Cont}(\Gamma_1,\Gamma_2) \leq \text{Cont}(h(\Gamma_1),h(\Gamma_2)) \frac{1}{\alpha^2}.
\]

Proof. Let \(h: (X,0) \to (Y,0) \) be an \(\alpha \)-Hölder homeomorphism, in other words, for some positive constant \(c \), we suppose that the homeomorphism \(h \) satisfies:

\[
\frac{1}{c} \|p - q\|^{\frac{\alpha}{2}} \leq \|h(p) - h(q)\| \leq c\|p - q\|^\alpha \forall p, q \in X.
\]

Given \(r > 0 \) sufficiently small, let us consider \(\gamma_i \in \Gamma_i \) (\(i = 1, 2 \)) such that

\[
f_{h(\Gamma_1),h(\Gamma_2)}(r) = \|h(\gamma_1) - h(\gamma_2)\|
\]

with \(\|h(\gamma_1)\| \geq r \) and \(\|h(\gamma_2)\| \geq r \). Therefore,

\[
f_{h(\Gamma_1),h(\Gamma_2)}(r) = \|h(\gamma_1) - h(\gamma_2)\|
\]

\[
\geq \frac{1}{c}\|\gamma_1 - \gamma_2\|^{\frac{\alpha}{2}}
\]

\[
\geq \frac{1}{c}\|f_{\Gamma_1,\Gamma_2}(u)\|^\alpha \text{ where } cu^\alpha = r
\]

and
Finally, taking \(r \to 0^+ \) in the last inequality, we get \(\text{Cont}(h(G_1), h(G_2)) \leq \frac{1}{\alpha^2} \text{Cont}(h(G_1), h(G_2)) \).

In order to show that \(\text{Cont}(G_1, G_2) \leq \frac{1}{\alpha} \text{Cont}(h(G_1), h(G_2)) \), we follow a similar way using \(h^{-1} \) instead \(h \).

\[\log f_{h(G_1), h(G_2)}(r) \leq \frac{\log f_{h(G_1)}(u)}{\alpha^2 \log u + \log e} - \frac{\log e}{\alpha \log u + \log e}. \]

3. Plane branches

Let \(C \) be the germ of an analytically irreducible complex curve at \(0 \in \mathbb{C}^2 \) (plane branch). We know that, up to analytic change of coordinates, one may suppose that \(C \) has a parametrization as follows:

\[
\begin{align*}
x &= t^n \\
y &= a_1 t^{m_1} + a_2 t^{m_2} + \cdots
\end{align*}
\]

where \(a_1 \neq 0, n \) is the multiplicity of \(C \) and \(y(t) \in \mathbb{C} \{t\} \). In the case that \(0 \) is a singular point of the curve, \(n \) does not divide the integer number \(m_1 \).

The series \(y(x^{1/n}) \) with fractional exponents is known as Newton-Puiseux parametrization of \(C \) and any other Newton-Puiseux parametrization of \(C \) is obtained from the parametrization above via \(x^{1/n} \to wx^{1/n} \) where \(w \in \mathbb{C} \) is an \(n \)th root of the unit.

Let us denote \(\beta_0 = n \) and \(\beta_1 = m_1 \). Let \(e_1 = \gcd(\beta_1, \beta_0) \) be the greatest common divisor of these two integers. Now, we denote by \(\beta_i \) the smaller exponent appearing in the series \(y(t) \) that is not multiple of \(e_1 \). Let \(e_2 = \gcd(e_1, \beta_2) \); and \(e_2 < e_1 \), and so on. Let us suppose that we have defined \(e_i = \gcd(e_{i-1}, \beta_i) \). Thus, we define \(\beta_{i+1} \) as the smaller exponent of the series \(y(t) \) that is not multiple of \(e_i \). Since the sequence of positive integers

\[
n > e_1 > \cdots > e_i > \cdots
\]
is decreasing, there exists an integer number \(g \) such that \(e_g = 1 \). In this way, we can rewrite Eq. 4 as follows:

\[
x = t^n \\
y = a_{\beta_1} t^{\beta_1} + a_{\beta_1+e_1} t^{\beta_1+e_1} + \cdots + a_{\beta_1+k_1 e_1} t^{\beta_1+k_1 e_1} \\
+ a_{\beta_2} t^{\beta_2} + a_{\beta_2+e_2} t^{\beta_2+e_2} + \cdots + a_{\beta_q} t^{\beta_q} + a_{\beta_q+e_q} t^{\beta_q+e_q} + \cdots \\
+ a_{\beta_g} t^{\beta_g} + a_{\beta_g+1} t^{\beta_g+1} + \cdots
\]

where the coefficient of \(t^{\beta_i} \) is nonzero \((1 \leq i \leq g)\). Now, we define the integers \(m_i \) and \(n_i \) via the following equations:

\[
e_i = n_i e_i \\
\beta_i = m_i e_i
\]

Thus, one may expand \(y \) as a fractional power series of \(x \) in the following way:

\[
y \left(x^{1/n}\right) = a_{\beta_1} x^{m_1} + a_{\beta_1+e_1} x^{m_1+1} + \cdots + a_{\beta_1+k_1 e_1} x^{m_1+k_1} \\
+ a_{\beta_2} x^{n_1 n_2} + a_{\beta_2+e_2} x^{n_1 n_2+1} + \cdots + a_{\beta_q} x^{n_1 n_2 \cdots n_q} + a_{\beta_q+e_q} x^{n_1 n_2 \cdots n_q+1} + \cdots \\
+ a_{\beta_g} x^{n_1 n_2 \cdots n_g} + a_{\beta_g+e_g} x^{n_1 n_2 \cdots n_g+1} + \cdots
\]

The sequence of integers \((\beta_0, \beta_1, \beta_2, \ldots, \beta_g) \) is called the characteristic exponents of \((C, 0) \), and the sequence \((m_1, n_1), \ldots, (m_g, n_g) \) is called the characteristic pairs of \((C, 0) \).
Remark 3. Any plane branch C with characteristic exponents $(\beta_0, \beta_1, \beta_2, \ldots, \beta_g)$ and characteristic pairs $(m_1, n_1), \ldots, (m_g, n_g)$ is bi-Lipschitz homeomorphic to another analytic plane branch parametrized in the following way:

$$y(x^{1/n}) = a_{\beta_1}x^{m_1/n_1} + a_{\beta_2}x^{m_2/n_2} + \cdots + a_{\beta_g}x^{m_g/n_{g-1}}$$

4. Main results

Let us begin this section by stating one of the main results of the paper.

Theorem 4.1. Let C and \tilde{C} be complex analytic plane branches. If C and \tilde{C} have different sequence of characteristic exponents, then there exists $0 < \alpha < 1$ such that \tilde{C} is not α-Hölder homeomorphic to C. In particular, the branches are not Lipschitz homeomorphic.

The next example give us an idea how to get a proof of Theorem 4.1.

Example 3. Let $C : y^2 = x^5$ and $\tilde{C} : y^2 = x^3$. There is no a bi-α-Hölder homeomorphism $F : (C, 0) \rightarrow (\tilde{C}, 0)$, where $\frac{2}{3} < \alpha < 1$.

Proof. Let $F : (C, 0) \rightarrow (\tilde{C}, 0)$ be a bi-α-Hölder homeomorphism , where $\alpha < 1$. Let $\Sigma_1, \Sigma_2, \Sigma_3$ and Σ_4 be the following real arcs in $(C, 0)$:

$$\Sigma_1 = \{(r, r^{5/2}) : r \geq 0\};$$
$$\Sigma_2 = \{(ri, r^{5/2}e^{i(5/2)\pi/2}) : r \geq 0\};$$
$$\Sigma_3 = \{(r, -r^{5/2}) : r \geq 0\};$$
$$\Sigma_4 = \{(-ri, r^{5/2}e^{i(5/2)11\pi/2}) : r \geq 0\};$$

Let $\{r_n\}$ be a sequence of positive numbers such that $\lim r_n = 0$. Let us define:

$$\Gamma_k(r) = (re^{\gamma_k(r)}, r^3/2e^{i(3/2)\gamma_k(r)}) \in F(\Sigma_k); \quad k = 1, 2, 3 \text{ and } 4$$

and,

$$r_{k,n} = \|F(\Sigma_k(r_n^{\alpha}))\|, \quad \text{for } k = 1, 2, 3 \text{ and } 4.$$

By using the α-Hölder property of F we get $r_n \lesssim r_{k,n}$ and

$$\|\Gamma_1(r_{1,n}) - \Gamma_3(r_{3,n})\| \lesssim (r_n)^{\alpha^2}.$$

We know that either

$$|\gamma_1(r) - \gamma_2(r)| \leq |\gamma_1(r) - \gamma_3(r)|$$

or

$$|\gamma_1(r) - \gamma_4(r)| \leq |\gamma_1(r) - \gamma_3(r)|,$$

for any $r > 0$. Thus, up to subsequences, one can suppose, for instance, that

$$|\gamma_1(r_{1,n}) - \gamma_2(r_{3,n})| \leq |\gamma_1(r_{1,n}) - \gamma_3(r_{3,n})|, \forall n,$$

hence,

$$\|\Gamma_1(r_{1,n}) - \Gamma_2(r_{3,n})\| \leq \|\Gamma_1(r_{1,n}) - \Gamma_3(r_{3,n})\|, \forall n.$$
Now, we use this last inequality jointly with $r_n \lesssim r_{n,k}$ and with
$$\| \Gamma_1 (r_{1,n}) - \Gamma_2 (r_{3,n}) \| \leq \| \Gamma_1 (r_{1,n}) - \Gamma_3 (r_{3,n}) \|, \forall n,$$
and we receive
$$f_{\Gamma_1, \Gamma_2} (r_n) \lesssim (r_n)^{\frac{g}{2} \alpha^2};$$
hence
$$\text{Cont} (\Gamma_1, \Gamma_2) \geq \frac{5}{2} \alpha^2.$$

From the other hand, it comes from Example 1 that $f_{\Sigma_1, \Sigma_2} \approx g_{\Sigma_1, \Sigma_2}$, since Σ_1 and Σ_2 are 1-dimensional subanalytic sets. However, since $g_{\Sigma_1, \Sigma_2} (r) \approx r$, it follows that $\text{Cont} (\Sigma_1, \Sigma_2) = 1$. Now, by Proposition 2.2
$$\alpha^2 \text{Cont} (\Gamma_1, \Gamma_2) \leq \text{Cont} (\Sigma_1, \Sigma_2) = 1,$$
hence $\alpha^4 \leq 2/5$.

The other cases are analyzed in a completely similar way.

In the following, we are going to generalize what was proved in the example above. Let C and \tilde{C} be branches of complex analytic plane curves at $0 \in \mathbb{C}^2$ with the following characteristic pairs $(n_1, m_1), (n_2, m_2), \ldots, (n_g, m_g)$ and $(q_1, l_1), (q_2, l_2), \ldots, (q_\tilde{g}, l_\tilde{g})$ respectively.

Lemma 4.2. If $g \neq \tilde{g}$ and α_0 is the positive real number such that
$$\alpha_0^4 = \max \{ k_{ij} (C, \tilde{C}) < 1; i = \tilde{g} \leq j \leq g \quad \text{or} \quad j = g \leq i \leq \tilde{g} \} \leq 1,$$
then there is no bi-α-Hölder homeomorphism F: $(C, 0) \to (\tilde{C}, 0)$, with $\alpha_0 < \alpha < 1$.

Proof. Without loss of generality, we can suppose that $(C, 0)$ and $(\tilde{C}, 0)$ are parametrized as in Remark 3 and let us suppose that $g > \tilde{g}$. In this way, we have the following three cases:

(i) $\frac{l_{\tilde{g}}}{n} \leq \frac{m_j}{n_1 \ldots n_j}, \forall \tilde{g} \leq j \leq g$;

(ii) $\frac{m_j}{n_1 \ldots n_j} \leq \frac{l_{\tilde{g}}}{n}, \forall \tilde{g} \leq j \leq g$;

(iii) $\exists j_0, \tilde{g} \leq j_0 \leq g$ such that $\frac{m_j}{n_1 \ldots n_j} \leq \frac{l_{\tilde{g}}}{n}, \forall \tilde{g} \leq j_0 \leq \frac{m_j}{n_1 \ldots n_j}, \forall j_0 < j \leq g$.

Notice that for any of the above cases, there exists at most one index j such that $\frac{l_{\tilde{g}}}{n} = \frac{m_j}{n_1 \ldots n_j}$. Since $g > \tilde{g}$, we can choose a j such that $\frac{l_{\tilde{g}}}{n} \neq \frac{m_j}{n_1 \ldots n_j}$. For instance, let us suppose that $\frac{l_{\tilde{g}}}{n} > \frac{m_j}{n_1 \ldots n_j}$, $\tilde{g} \leq j \leq g$. In this case, let us consider $\Gamma_1, \Gamma_2, \Gamma_3$ and Γ_4 the following arcs on $(\tilde{C}, 0)$:

$$\Gamma_1 = \{(r, b_{\beta_1} r^{q_1}, b_{\beta_2} r^{q_1 q_2}, \ldots + b_{\beta_{\tilde{g}}} r^{l_\tilde{g}}): r \geq 0\};$$

$$\Gamma_2 = \{(r, b_{\beta_1} r^{q_1} e^{i \left(\frac{l_1}{n}\right) \frac{\pi}{2}}, b_{\beta_2} r^{q_1 q_2} e^{i \left(\frac{l_2}{q_1 q_2}\right) \frac{\pi}{2}}, \ldots + b_{\beta_{\tilde{g}}} r^{l_{\tilde{g}}} e^{i \left(\frac{l_\tilde{g}}{n}\right) \frac{\pi}{2}}: r \geq 0\};$$

$$\Gamma_3 = \{(r, b_{\beta_1} r^{q_1}, b_{\beta_2} r^{q_1 q_2}, \ldots + b_{\beta_{\tilde{g}-1}} r^{q_{1 \ldots \tilde{g}-1}}, b_{\beta_{\tilde{g}}} r^{l_{\tilde{g}}} e^{i \left(\frac{l_{\tilde{g}}}{n}\right) \frac{\pi}{2}}): r \geq 0\};$$
1-dimensional subanalytic sets. However, since
\[\forall \alpha \text{ or } \exists \beta \text{ or } \exists \gamma \text{ or } \exists \delta \text{ or } \exists \varepsilon \text{ or } \exists \zeta. \]

Let
\[\Sigma_k (r) = (r e^{i \sigma_k (r)}, a_{\beta_1} r^{m_1} e^{i (\sigma_1 (r) + \beta_1)} a_{\beta_2} r^{m_2} e^{i (\sigma_2 (r) + \beta_2)} + \ldots + a_{\beta_q} r^{m_q} e^{i (\sigma_q (r) + \beta_q)} \in F^{-1} (\Gamma_k); \quad k = 1, 2, 3 \text{ and } 4. \]

At this moment, let us take \(\alpha_0 < \alpha < 1 \) and suppose that there exists a bi-\(\alpha \)-Hölder homeomorphism \(F : (C, 0) \rightarrow (\tilde{C}, 0) \).

Let \(\{ r_n \} \) be a sequence of positive numbers such that \(\lim r_n = 0. \)

Let us define
\[r_{k,n} = \| F^{-1} (\Gamma_k (r_n^\alpha)) \|, \quad \text{for } k = 1, 2, 3 \text{ and } 4. \]

By using the \(\alpha \)-Hölder property of \(F \) we get \(r_n \lesssim r_{k,n} \) and
\[\| \Sigma_1 (r_{1,n}) - \Sigma_3 (r_{3,n}) \| \lesssim (r_n)^{\frac{1}{\alpha^2}}. \]

Moreover, we know that either
\[| \sigma_1 (r) - \sigma_2 (r) | \leq | \sigma_1 (r) - \sigma_3 (r) | \]

or
\[| \sigma_1 (r) - \sigma_4 (r) | \leq | \sigma_1 (r) - \sigma_3 (r) |, \]

\(\forall r > 0. \) Up to a subsequence, we may suppose that
\[| \sigma_1 (r_{1,n}) - \sigma_2 (r_{3,n}) | \leq | \sigma_1 (r_{1,n}) - \sigma_3 (r_{3,n}) |, \forall n. \]

\[\therefore \]
\[\| \Sigma_1 (r_{1,n}) - \Sigma_2 (r_{3,n}) \| \leq \| \Sigma_1 (r_{1,n}) - \Sigma_3 (r_{3,n}) \|, \forall n. \]

Now, we use this last inequality jointly with \(r_n \lesssim r_{n,k} \) and with
\[\| \Sigma_1 (r_{1,n}) - \Sigma_2 (r_{3,n}) \| \leq \| \Sigma_1 (r_{1,n}) - \Sigma_4 (r_{3,n}) \|, \forall n. \]

and we receive
\[f_{\Sigma_1, \Sigma_2} (r_n) \lesssim (r_n)^{\frac{1}{\alpha^2}}; \]

hence
\[\text{Cont}(\Sigma_1, \Sigma_2) \geq \frac{l_\beta}{n} \frac{1}{\alpha^2}. \]

From the other hand, it comes from Example 1 that \(f_{\Gamma_1, \Gamma_2} \approx g_{\Gamma_1, \Gamma_2} \), since \(\Gamma_1 \) and \(\Gamma_2 \) are 1-dimensional subanalytic sets. However, since \(g_{\Gamma_1, \Gamma_2} (r) \approx r \), it follows that \(\text{Cont}(\Gamma_1, \Gamma_2) = 1. \)

Now, by Proposition 2.2
\[\alpha^2 \text{Cont}(\Sigma_1, \Sigma_2) \leq \text{Cont}(\Gamma_1, \Gamma_2) = 1, \]

hence \(\alpha^4 \leq \frac{n}{l_\beta}. \)

The other cases are analyzed in a completely similar way.
Lemma 4.3. Let \((C, 0) \in \tilde{C}, 0\) be two complex analytic plane branches with \(g = \tilde{g}\). If there exits \(1 \leq j \leq g\) such that \(\alpha_0 = k_{j, j}(C, C) < 1\), then there is no bi-\(\alpha\)-Hölder homeomorphism \(F: (C, 0) \rightarrow (\tilde{C}, 0)\), \(\forall \alpha_0 < \alpha < 1\).

Proof. Let \((C, 0)\) and \((\tilde{C}, 0)\) be parametrized as in Remark 3. Let \(1 \leq j \leq g\) be such that \(\frac{l_j n_1 \ldots n_j}{m_j q_1 \ldots q_j} \neq 1\). Let us suppose that \(\frac{l_j n_1 \ldots n_j}{m_j q_1 \ldots q_j} < 1\), that is \(\frac{l_j}{q_1 \ldots q_j} < \frac{m_j}{n_1 \ldots n_j}\). Let us consider \(\Sigma_1, \Sigma_2, \Sigma_3\) and \(\Sigma_4\) the following arcs in \(C\):

\[
\Sigma_1 = \{(r, a_{\beta_1} r^{m_1} + a_{\beta_2} r^{m_2} + \cdots + a_{\beta_j} r^{m_j}) : r \geq 0\};
\]

\[
\Sigma_2 = \{(r, a_{\beta_1} r^{m_1} e^{\frac{m_1}{n_1}} + \cdots + a_{\beta_j} r^{m_j} e^{\frac{m_j}{n_j}}) : r \geq 0\};
\]

\[
\Sigma_3 = \{(r, a_{\beta_1} r^{m_1} + \cdots + a_{\beta_j} r^{m_j} + a_{\beta_{j-1}} r^{m_j-1} + \cdots + a_{\beta_j} r^{m_j}) : r \geq 0\};
\]

\[
\Sigma_4 = \{(-r, a_{\beta_1} r^{m_1} e^{\frac{m_1}{n_1}} + \cdots + a_{\beta_j} r^{m_j} e^{\frac{m_j}{n_j}}) : r \geq 0\}.
\]

Let

\[
\Gamma_k (r) = (re^{i\sigma_k(r)}, b_{\beta_1} r^{m_1} e^{\frac{m_1}{n_1}} e^{i\frac{l_1}{q_1}} \sigma_k(r) + \cdots + b_{\beta_j} r^{m_j} e^{\frac{m_j}{n_j}} e^{i\frac{l_j}{q_j}} \sigma_k(r) + \cdots + b_{\beta_j} r^{m_j} e^{\frac{m_j}{n_j}} e^{i\frac{l_j}{q_j}} \sigma_k(r) + \cdots) \in F(\Sigma_k); \quad k = 1, 2, 3, 4.
\]

By contradiction, let us suppose that there exists a bi-\(\alpha\)-Hölder homeomorphism \(F: (C, 0) \rightarrow (\tilde{C}, 0)\), where \(\alpha_0 < \alpha < 1\).

Let \(\{r_n\}\) be a sequence of positive numbers such that \(\lim r_n = 0\). Let us define

\[
r_{k,n} = \|F(\Sigma_k(r_n^a))\|, \quad k = 1, 2, 3, 4.
\]

By using the \(\alpha\)-Hölder property of \(F\) we get \(r_n \lesssim r_{k,n}\) and

\[
\|\Gamma_1 (r_{1,n}) - \Gamma_3 (r_{3,n})\| \lesssim (r_n)^{\frac{m_j}{n_1 \ldots n_j} - \alpha^2}
\]

Moreover, we know that either

\[
|\gamma_1 (r) - \gamma_2 (r)| \leq |\gamma_1 (r) - \gamma_3 (r)|
\]

or

\[
|\gamma_1 (r) - \gamma_4 (r)| \leq |\gamma_1 (r) - \gamma_3 (r)|,
\]

for all \(r > 0\). Up to a subsequence, we may suppose that

\[
|\gamma_1 (r_{1,n}) - \gamma_2 (r_{3,n})| \leq |\gamma_1 (r_{1,n}) - \gamma_3 (r_{3,n})|, \quad \forall n.
\]

\[
\|\Gamma_1 (r_{1,n}) - \Gamma_2 (r_{3,n})\| \leq \|\Gamma_1 (r_{1,n}) - \Gamma_3 (r_{3,n})\|, \quad \forall n.
\]

Now, we use this last inequality jointly with \(r_n \lesssim r_{n,k}\) and with

\[
\|\Gamma_1 (r_{1,n}) - \Gamma_2 (r_{3,n})\| \leq \|\Gamma_1 (r_{1,n}) - \Gamma_3 (r_{3,n})\|, \quad \forall n.
\]
and we receive

\[f_{\Gamma_1, \Gamma_2}(r_n) \lesssim (r_n)^{n_1 \ldots n_j}; \]

hence

\[\text{Cont}(\Gamma_1, \Gamma_2) \geq \frac{m_j}{n_1 \ldots n_j} \alpha^2. \]

From the other hand, it comes from Example 1 that \(f_{\Sigma_1, \Sigma_2} \approx g_{\Sigma_1, \Sigma_2} \), since \(\Sigma_1 \) and \(\Sigma_2 \) are 1-dimensional subanalytic sets. However, since \(g_{\Sigma_1, \Sigma_2}(r) \approx r \), it follows that \(\text{Cont}(\Sigma_1, \Sigma_2) = 1 \).

Now, by Proposition 2.2,

\[\alpha^2 \text{Cont}(\Gamma_1, \Gamma_2) \leq \text{Cont}(\Sigma_1, \Sigma_2) = 1, \]

hence \(\alpha \leq \frac{n_1 \ldots n_j}{m_j} \).

The other cases are similar. \(\square \)

Proof Proof of Theorem 4.1

Let us suppose by contradiction that \(C \) and \(\tilde{C} \) are \(\alpha \)-Hölder homeomorphic for all \(\alpha \in (0, 1) \). From Lemma 4.2 we get \(g = \tilde{g} \), and by Lemma 4.3 we know that

\[\frac{l_i}{q_i} = \frac{m_i}{n_1 \ldots n_i}, \forall i. \]

By taking \(i = 1 \), in the previous equation, we get \(\frac{m_1}{n_1} = \frac{l_1}{q_1} \), that is, \(n_1 = q_1 \) and \(m_1 = l_1 \).

By taking \(i = 2 \), in the previous equation, we get

\[\frac{m_2}{n_1n_2} = \frac{l_2}{q_1q_2}. \]

Since \(n_1 = q_1 \), it follows that \(n_2 = q_2 \) and \(m_2 = l_2 \).

Following in that way, for \(i = g \), we get

\[\frac{m_g}{n_1 \ldots n_g} = \frac{l_g}{q_1 \ldots q_g}. \]

Since we have proved that \(n_1 = q_1, n_2 = q_2, \ldots, n_{g-1} = q_{g-1} \), we have \(n_g = q_g \) and \(m_g = l_g \).

Then \((m_1, n_1) = (l_1, q_1), (m_2, n_2) = (l_2, q_2), \ldots, (m_g, n_g) = (l_g, q_g) \), hence \((C, 0) \) and \((\tilde{C}, 0) \) have the same characteristic exponents. \(\square \)

Next, we are dealing with germs of complex analytic plane curves having more than one branch at \(0 \in \mathbb{C}^2 \) and we are going to arrive in a result like Theorem 4.1. Let us start pointing out the following version of Proposition 2.2 for germs of complex analytic plane curves with several branches.

Proposition 4.4. Let \(C \) and \(\tilde{C} \) be germs of complex analytic plane curves at \(0 \in \mathbb{C}^2 \). Let \(h : (C, 0) \to (\tilde{C}, 0) \) be a \(\alpha \)-Hölder homeomorphism. If \(C_1, \ldots, C_r \) are the irreducible components of \(C \), then \(h(C_1), \ldots, h(C_r) \) are the irreducible components of \(\tilde{C} \) and

\[\alpha^2 \text{Cont}(C_i, C_j) \leq \frac{\text{Cont}(h(C_i), h(C_j))}{\text{Cont}(h(C_i), h(C_j))} \leq \frac{1}{\alpha^2}. \]
Proof. By Lemma A.8 in [5], it follows that $h(C_1),...,h(C_r)$ are the irreducible components of \hat{C} and, by Proposition 2.2,

$$\alpha^2 \leq \frac{\text{Cont}(C_i,C_j)}{\text{Cont}(h(C_i),h(C_j))} \leq \frac{1}{\alpha^2}.$$

\[\square \]

Theorem 4.5. Let C_1, C_2, \hat{C}_1 and \hat{C}_2 be complex analytic plane branches. If $\text{Cont}(C_1,C_2) \neq \text{Cont}(\hat{C}_1,\hat{C}_2)$, then there exists $0 < \alpha < 1$ such that $C = C_1 \cup C_2$ is not α-Hölder homeomorphic to $\hat{C} = \hat{C}_1 \cup \hat{C}_2$.

Proof. Let us take

$$\alpha_0^2 = \min \left\{ \frac{\text{Cont}(\hat{C}_1,\hat{C}_2)}{\text{Cont}(C_1,C_2)}, \frac{\text{Cont}(C_1,C_2)}{\text{Cont}(\hat{C}_1,\hat{C}_2)} \right\} < 1.$$

So, it comes from Proposition 4.4 that C is not α-Hölder homeomorphic to \hat{C} with $\alpha_0 < \alpha < 1$.

\[\square \]

As a consequence of Theorems 4.4 and 4.5 we get the following

Theorem 4.6. Let C and \hat{C} be germs of complex analytic plane curves at $0 \in \mathbb{C}^2$. Let C_1,\ldots,C_r and $\hat{C}_1,\ldots,\hat{C}_s$ be the branches of C and \hat{C}, respectively. If, for each $\alpha \in (0,1)$, there exists a bi-\(\alpha\)-Hölder homeomorphism between C and \hat{C}, then there is a bijection $\sigma : \{1,\ldots,r\} \to \{1,\ldots,s\}$ such that

i) the branches C_i and $\hat{C}_{\sigma(i)}$ have the same characteristic exponents, for $i = 1,\ldots,r$;

ii) the pair of branches (C_i,C_j) and $(\hat{C}_{\sigma(i)},\hat{C}_{\sigma(j)})$ have the same intersection multiplicity at 0, for $i \neq j \in \{1,\ldots,r\}$.

Proof. Let us remark that, if $h : C \to \hat{C}$ is a homeomorphism, then by Lemma A.8 in [5], as already used in the proof of the Theorem 4.1, for each $u \in \{1,\ldots,r\}$ there is exactly one $v \in \{1,\ldots,s\}$ such that $h(C_u) = \hat{C}_v$ and, in particular, $r = s$. We denote by E to be the union of the following subsets $\{1\}$, $\{k = k_{ij}(C_u,\hat{C}_v); u,v \in \{1,\ldots,r\}$ and $k < 1\}$ and

$$\left\{ k = \min \left\{ \frac{\text{Cont}(C_u,\hat{C}_v)}{\text{Cont}(C_u,C_i)}, \frac{\text{Cont}(C_u,C_i)}{\text{Cont}(C_u,\hat{C}_v)} \right\} ; i,j,u,v \in \{1,\ldots,r\}, i \neq j, u \neq v \text{ and } k < 1 \right\}.$$

We have that E is a finite and non-empty set with $k_0 = \max E < 1$. Thus, let $\alpha \in (0,1)$ be such that $\alpha^4 > k_0$ and let $h : C \to \hat{C}$ be a bi-\(\alpha\)-Hölder homeomorphism. By Theorem 4.1, for each $i,j \in \{1,\ldots,r\}$, C_i and $\hat{C}_{\sigma(i)} = h(C_i)$ have the same characteristic exponents. Moreover, for each $i,j \in \{1,\ldots,r\}$, by Theorem 4.5 $\text{Cont}(C_i,C_j) = \text{Cont}(\hat{C}_{\sigma(i)},\hat{C}_{\sigma(j)})$. Since $\text{Cont}(C_i,C_j) = \text{Cont}(\hat{C}_{\sigma(i)},\hat{C}_{\sigma(j)})$, it comes from Lemma 3.1 in [4] that the pairs (C_i,C_j) and $(\hat{C}_{\sigma(i)},\hat{C}_{\sigma(j)})$ have the same coincidence at 0 and, therefore, by Proposition 2.4 in [6], we get that the pairs (C_i,C_j) and $(\hat{C}_{\sigma(i)},\hat{C}_{\sigma(j)})$ have the same intersection multiplicity at 0.

\[\square \]

We are going to show that Theorem 4.6 generalizes some known results which we list below. For instance, since Lipschitz maps are α-Hölder for all $0 < \alpha \leq 1$, we obtain, as a first application of Theorem 4.6, the main result in [4].
Corollary 4.7. Let \(X \) and \(Y \) be germs of complex analytic plane curves at \(0 \in \mathbb{C}^2 \). If there exists a bi-Lipschitz subanalytic map between \(X \) and \(Y \), then \(X \) and \(Y \) are topologically equivalent.

Actually, we do not use the subanalytic hypotheses in Theorem 4.6, hence we obtain the following result proved in [7].

Corollary 4.8. Let \(X \) and \(Y \) be germs of complex analytic plane curves at \(0 \in \mathbb{C}^2 \). If there exists a bi-Lipschitz homeomorphism between \(X \) and \(Y \), then \(X \) and \(Y \) are topologically equivalent.

Since germs of complex analytic curves in \(\mathbb{C}^n \) (spatial curves) are bi-Lipschitz homeomorphic to their generic projections on the complex plane \(\mathbb{C}^2 \), we also get, as an immediate consequence of Theorem 4.6, the following.

Corollary 4.9. Let \(X \) and \(Y \) be germs of complex analytic curves in \(\mathbb{C}^n \) and \(\mathbb{C}^m \) respectively. If there exists a bi-\(\alpha \)-Hölder homeomorphism between \(X \) and \(Y \), for all \(0 < \alpha \leq 1 \), then \(X \) and \(Y \) are bi-Lipschitz homeomorphic.

Proof. Let \(\tilde{X} \subset \mathbb{C}^2 \) and \(\tilde{Y} \subset \mathbb{C}^2 \) be generic projections of \(X \) and \(Y \) respectively. Since \(X \) and \(\tilde{X} \) (respectively \(Y \) and \(\tilde{Y} \)) are bi-Lipschitz homeomorphic, it follows that \(X \) and \(Y \) are \(\alpha \)-Hölder homeomorphic for all \(\alpha \in (0, 1) \). By Theorem 4.6, there exist a bijection between the branches of \(\tilde{X} \) and \(\tilde{Y} \) that preserves characteristic exponents of branches and, also, preserves intersection multiplicity of pairs of branches. Hence, using Pham-Teissier Theorem (quoted in the introduction), \(\tilde{X} \) and \(\tilde{Y} \) come bi-Lipschitz homeomorphic. It finishes the proof.

We also obtain, in the case of complex analytic plane curves, a generalization of the main result in [2] and the Theorem 4.2 in [8].

Corollary 4.10. Let \(X \in \mathbb{C}^n \) be a germ of complex analytic curve at the origin. Suppose that, for each \(\alpha \in (0, 1) \), there is a bi-\(\alpha \)-Hölder homeomorphism \(h : (X, 0) \rightarrow (\mathbb{C}, 0) \). Then, \((X, 0) \) is smooth.

We would like to finish this section by stressing the existence of germ of sets that are \(\alpha \)-Hölder homeomorphic, for all \(0 < \alpha < 1 \), but are not bi-Lipschitz homeomorphic.

Definition 3. We say that \(h : C \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a log-Lipschitz map, if there exists \(K > 0 \) such that \(\|h(x) - h(y)\| \leq K\|x - y\| \cdot \|\log\|x - y\|| \), whenever \(x, y \in C \) and \(\|x - y\| < 1 \).

Remark 4. If \(h \) is a log-Lipschitz map, then \(h \) is \(\alpha \)-Hölder, for all \(\alpha \in (0, 1) \).

Definition 4. Let \((X, x_0) \) and \((Y, y_0) \) be germs of Euclidean subsets. We say that \((X, x_0) \) is bi-log-Lipschitz homeomorphic to \((Y, y_0) \) if there exists a germ of homeomorphism \(f : (X, x_0) \rightarrow (Y, y_0) \) such that \(f \) and its inverse \(f^{-1} \) are log-Lipschitz mappings. In this case, \(f \) is called a bi-log-Lipschitz homeomorphism from \((X, x_0) \) onto \((Y, y_0) \).
Corollary 4.11. Let C and \tilde{C} be germs of complex analytic plane curves at $0 \in \mathbb{C}^2$. If C and \tilde{C} are bi-log-Lipschitz homeomorphic, then they are bi-Lipschitz homeomorphic.

According to the example below, one sees that the last corollary is very dependent on the rigidity of analytic complex structure of the sets.

Example 4. Let $\tilde{C} = \{(x, y) \in \mathbb{R}^2; y = |x \cdot \log|x|| \text{ and } x \neq 0\} \cup \{(0, 0)\}$. The homeomorphism $h : (\mathbb{R}, 0) \to (\tilde{C}, 0)$ given by

$$h(x) = \begin{cases} (x, |x \cdot \log|x||), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

is a bi-log-Lipschitz homeomorphism. However, $(\tilde{C}, 0)$ is not bi-Lipschitz homeomorphic to $(\mathbb{R}, 0)$.

Notice that \tilde{C} as defined above is definable on the o-minimal structure $(\mathbb{R}_{\text{an}}, \exp, \log)$.

References

9. F. Pham and B. Teissier Fractions lipschitziennes d’une algèbre analytique complexe et saturation de Zariski. Prépublications du Centre de Mathématiques de l’Ecole Polytechnique (Paris), No. M17.0669, June (1969). Available at https://hal.archives-ouvertes.fr/hal-00384928/

Alexandre Fernandes
Departamento de Matemática,
Universidade Federal do Ceará
Humberto Monte, s/n Campus do Pici - Bloco 914, 60455-760 Fortaleza-CE,
Brazil
alex@mat.ufc.br

J. Edson Sampaio
BCAM - Basque Center for Applied Mathematics, Mazarredo, 14 E48009 Bilbao, Basque Country - Spain. E-mail: esampaio@bcamath.org
and
Departamento de Matemática,
Universidade Federal do Ceará, Rua Campus do Pici, s/n, Bloco 914, Pici, 60440-900, Fortaleza-CE, Brazil.
E-mail: edsonsampaio@mat.ufc.br
José L. P. Silva
Instituto de Ciências Exatas e da Natureza,
Universidade da Integração Internacional
da Lusofonia Afro-Brasileira - UNILAB,
CE 060, KM 51, Campus dos Palmares,
62785-000 Acarape-CE.
Brazil
joserlanperote@unilab.edu.br