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SUMMARY

In Goal-Oriented Adaptivity (GOA), the error in the Quantity of Interest (QoI) is represented using the
error functions of the direct and adjoint problems. This error representation is subsequently bounded above
by element-wise error indicators that are used to drive optimal refinements. In this work, we propose to
replace, in the error representation, the adjoint problem by an alternative operator. The main advantage of
the proposed approach is that, when judiciously selecting such alternative operator, the corresponding upper
bound of the error representation becomes sharper, leading to a more efficient GOA.
While the method can be applied to a variety of problems, we focus here on two- and three-dimensional
(2D and 3D) Helmholtz problems. We show via extensive numerical experimentation that the upper bounds
provided by the alternative error representations are sharper than the classical ones and lead to a more robust
p-adaptive process. We also provide guidelines for finding operators delivering sharp error representation
upper bounds. We further extend the results to a convection-dominated diffusion problem as well as to
problems with discontinuous material coefficients. Finally, we consider a sonic Logging-While-Drilling
(LWD) problem to illustrate the applicability of the proposed method.
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1. INTRODUCTION

To obtain highly accurate finite element solutions, one often requires meshes that contain a large
number of Degrees of Freedom (DoF). Since computational resources are limited, it is customary to
build discretizations that require the smallest possible number of DoF to achieve a given tolerance
error. As a result, mesh-adaptive finite element algorithms arose. They were first developed to
minimize the energy norm of the error per added DoF (see e.g. [1, 2]). However, in many engineering
applications, one is interested in a specific Quantity of Interest (QoI). In these cases, energy-norm
driven self-adaptive algorithms often fail to provide the required accuracy in the QoI using limited
computational resources. For instance, Pardo et al. [3, 4] showed some electromagnetic applications
in which an energy-norm adaptive algorithm reduces the energy-norm error to a level below 0.01%,
while the relative error in the QoI still remains above 15%. In order to construct meshes that
minimize the number of DoF while providing the required accuracy of the solution in a given QoI,
the so-called Goal-Oriented Adaptivity (GOA) emerged.

There exist numerous engineering applications that motivate the use of GOA, including
electromagnetics [5, 4, 6, 7, 8], structural problems and visco-elasticity [9, 10, 11, 12, 13], fluid-
structure interactions [14, 15, 16], and control theory [17, 18, 19]. Apart from these applications,
convergence properties of GOA have also been recently studied in [20, 21, 22, 23, 24].

The origin of the GOA is in the works of Rannacher et al. [25, 26, 27] followed by the works of
Peraire, Patera et al. [28, 29, 30, 31, 32, 33] on a posteriori error estimates of the error in the quantity
of interest. The works of Prudhomme and Oden [34, 35, 36, 37] formulate the goal-oriented error
estimation procedure based on representing the error in the QoI in terms of global functions defined
over the entire computational domain. This error representation is subsequently bounded by the sum
of local indicators that are used for the adaptive process.

In this work, we start with the methodology presented in [34], referred to as the classical goal-
oriented method. It employs the dual residual to derive upper bounds of the error in the QoI,
and thus, indicators for the adaptive process. However, we depart from the classical approach
by introducing an alternative dual operator for the representation of the error in the QoI, so
the corresponding error bounds (indicators) become sharper than the classical ones. This new
methodology generalizes the classical one. In particular, when the alternative dual operator
coincides with the adjoint operator, we recover the error (upper) bounds of the classical goal-
oriented method.

The main contribution in this work is the extension of the 1D results shown in [38] to the multi-
dimensional case. In 1D (see [38]), a convergent p-adaptive algorithm was obtained either: (a) by
combining the classical indicators and the Projection Based Interpolation (PBI) [39, 40, 41], or (b)
by using the alternative indicators (with or without PBI). This result is extended here to the 2D and
3D cases and applied to Helmholtz and convection-dominated diffusion problems for continuous
and discontinuous coefficients. We also show that finding in general the operator that provides the
sharpest possible upper bounds is prohibitively expensive, and we provide a feasible alternative
operator that delivers quite sharp upper bounds. A sonic logging-while-drilling (LWD) problem
illustrates the applicability of the proposed method.

The remainder of the paper is organized as follows. In section 2, we define the model Helmholtz
problem used in this investigation. In section 3, we recall the alternative method developed in [38],
and we address the issue of finding the operator that provides the sharpest error upper bounds. In
section 4, we present the p-adaptive algorithm and the software we have developed for the numerical
computations. In section 5, we analyze multiple 2D and 3D numerical results. We draw the main
conclusions in section 6. This paper also contains three appendices describing additional numerical
experiments about: (a) a convection-dominated diffusion problem (see Appendix A), (b) a problem
with discontinuous material coefficients (see Appendix B), and (c) a geophysical borehole sonic
LWD application (see Appendix C).
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2. MODEL PROBLEM

2.1. Definitions

Given a domain D Ă Rn, HpDq denotes a Hilbert space of functions defined over D, endowed with
the norm }¨}HpDq .

Let Ω Ă Rn be the physical domain of our problem of interest. Let T be a partition of Ω into open
elements K such that sΩ “ Ť

KPT
sK.

We work with a Hilbert space HpΩq having the following property: If w P HpΩq, then its
restriction wK to any open element K P T satisfies wK P HpKq. We define the restriction RK :
HpΩq Ñ HpKq such thatRkpvq “ vk, @v P HpΩq. From now on, we will use the simplified notation
H :“ HpΩq and HK :“ HpKq.

A bounded linear operator B P LpH,H˚q is said to be localizable if, for any K P T , there exists
BK P LpHK ,H˚Kq such that:

〈Bw, v〉H˚,H “
ÿ

KPT
〈BK ˝RKw,RKv〉H˚

K
,HK

“
ÿ

KPT
〈BKwK , vK〉H˚

K
,HK

.

In other words, B “
ÿ

KPT
R˚K ˝BK ˝RK .

Remark: It is straightforward to show that if B : HÑ H˚ is localizable, then the formal adjoint
operator B˚ : HÑ H˚ is also localizable and B˚ “ ř

K R
˚
K ˝B˚K ˝RK .

2.2. Helmholtz equation

We select the Helmholtz equation for its wide use in wave propagation problems. Specifically,
we consider the following problem with mixed boundary conditions: for Ω “ p0, 1qd Ă Rd, with
boundary BΩ partitioned into two parts ΓI and ΓD such that sΓD

Ť

sΓI “ BΩ, and Γ̊D
Ş

Γ̊I “ H,

Find u such that, given k ą 0,
$

’

&

’

%

´∆u´ k2u “ 1 in Ω,

u “ 0 on ΓD,

Bnu` iku “ 0 on ΓI ,

We set H :“ tu P H1pΩq, u|ΓD
“ 0u and 〈¨ , ¨〉L2 the standard L2 sesquilinear product. We define

the QoI l as the linear functional in H˚ corresponding to the integral of w P H on a portion ΓQoI of
the boundary ΓI :

〈l , w〉H˚,H “ 〈1 , w〉L2pΓQoIq
@w P H.

Operator B P LpH,H˚q associated with above problem is defined as follows,

〈Bw , z〉H˚,H “ 〈∇w ,∇z〉L2pΩq ´ k2 〈w , z〉L2pΩq ` ik 〈w , z〉L2pΓIq
, @w, z P H. (2.1)

Notice that the above problem is numerically unstable for high wavenumbers [42, 43, 44, 45, 46,
47, 48, 49, 50].

For the 2D case, d “ 2, the boundaries are set as

ΓD :“ `r0, 1s ˆ t0u˘
ď

`t0u ˆ r0, 1s˘,
ΓI :“ `r0, 1s ˆ t1u˘

ď

`t1u ˆ r0, 1s˘,
ΓQoI :“ t1u ˆ p0.75, 1q,

as illustrated in Figure 1.
For the 3D case, d “ 3 (see Figure 2), we set the boundaries as follows: A Dirichlet boundary
condition is prescribed on the three faces whose intersection is p0, 0, 0q and an impedance boundary

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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ΩΓD

ΓI

ΓQoI

Figure 1. Computational domain in 2D

condition is imposed on the three faces whose intersection is p1, 1, 1q.

ΓD :“`r0, 1s ˆ r0, 1s ˆ t0u˘
ď

`r0, 1s ˆ t0u ˆ r0, 1s˘
ď

`t0u ˆ r0, 1s ˆ r0, 1s˘

ΓI :“`r0, 1s ˆ r0, 1s ˆ t1u˘
ď

`r0, 1s ˆ t1u ˆ r0, 1s˘
ď

`t1u ˆ r0, 1s ˆ r0, 1s˘

ΓQoI :“`r0.75, 1s ˆ r0.75, 1s ˆ t1u˘
ď

`r0.75, 1s ˆ t1u ˆ r0.75, 1s˘
ď

`t1u ˆ r0.75, 1s ˆ r0.75, 1s˘.

x

y

z

Ω

ΓQoI

Figure 2. Computational domain for our 3D Helmholtz problem

3. ERROR REPRESENTATIONS FOR GOAL ORIENTED ADAPTIVITY

In this Section, we briefly recall the method described in [38] and reformulate it in terms of
operators.

3.1. Classical goal-oriented formulation

Consider a loading form f P H˚ and a QoI l P H˚. Let Hh Ă H be a conforming finite element
subspace associated with partition T . Let B P LpH,H˚q be a localizable operator such that there
exists a unique solution for each of both continuous and discrete direct and dual problems:

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Find u P H and uh P Hh such that

Bu “ f in H˚ (3.1)
〈Buh, wh〉H˚,H “ 〈f, wh〉H˚,H , @wh P Hh.

and

Find v P H and vh P Hh such that

B˚v “ l in H˚ (3.2)
〈B˚vh, wh〉H˚,H “ 〈l, wh〉H˚,H , @wh P Hh.

The errors in the approximations of the direct and adjoint problems are defined as e “ u´ uh and
ε “ v ´ vh, respectively. One can also represent these errors as solutions of the following variational
problems:

• Find e P H such that

Be “ f ´Buh “: Rhp .

• Find ε P H such that

B˚ε “ l ´B˚vh “: Rhd . (3.3)

Functionals Rhp ,Rhd P H˚ are known as the primal and dual residuals, respectively.
Evaluating (3.3) at e, using Galerkin’s orthogonality and the localization property ofB, we obtain

〈l , e〉H˚,H “
〈
Rhd , e

〉
H˚,H “ 〈B˚ε , e〉H˚,H “

ÿ

KPT
〈B˚KεK , eK〉H˚

K
,HK

(3.4)

Thus, an upper bound of the error in the QoI is given as follows:
ˇ

ˇ

ˇ
〈l , e〉H˚,H

ˇ

ˇ

ˇ
ď

ÿ

KPT

ˇ

ˇ

ˇ
〈B˚KεK , eK〉H˚

K
,HK

ˇ

ˇ

ˇ
“

ÿ

KPT
ηK “: ηT , (3.5)

where ηK :“
ˇ

ˇ

ˇ
〈B˚KεK , eK〉H˚

K
,HK

ˇ

ˇ

ˇ
. This upper bound will be referred to as the classical bound.

3.2. Alternative representations

The key idea proposed here is to use alternative representations of the residuals Rhd or Rhp . Let
rB P LpH,H˚q be a localizable invertible operator. We define the alternative dual error representation
as the solution of the linear equation:

Find rε P H such that
rB rε “ Rhd . (3.6)

Analogously, we define the alternative primal error representation as the solution of the linear
equation:

Find re P H such that
rB re “ Rhp .

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme
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For simplicity, we use the same operators for construction of the alternative direct and dual errors.
However, it is possible to select different representations for each error.

Following the same procedure as in (3.4) and (3.5), we obtain the alternative bound of the error
in the QoI

ˇ

ˇ

ˇ
〈l , e〉H˚,H

ˇ

ˇ

ˇ
ď

ÿ

KPT

ˇ

ˇ

ˇ

ˇ

¨
rBKrεK , eK

∂
H˚

K
,HK

ˇ

ˇ

ˇ

ˇ

“
ÿ

KPT
rηK “:

rηT (3.7)

where rηK :“
ˇ

ˇ

ˇ

ˇ

¨
rBKrεK , eK

∂
H˚

K
,HK

ˇ

ˇ

ˇ

ˇ

. One can alternatively make use of the primal error

representation re to obtain the bound:

ˇ

ˇ

ˇ
〈l , e〉H˚,H

ˇ

ˇ

ˇ
ď

ÿ

KPT

ˇ

ˇ

ˇ

ˇ

¨
rBKreK , εK

∂
H˚

K
,HK

ˇ

ˇ

ˇ

ˇ

. (3.8)

Numerical results (see Figure 7b) show that upper bounds given by (3.7) and (3.8) are similar. Hence
and for simplicity, in the following we will consider Eq. (3.7), disregarding Eq. (3.8).

The method presented here is indeed a generalization of the classical GOA, that is recovered by
simply selecting rB “ B˚ or rB “ B.

An interesting case occurs when additionally each local counterpart rBK of rB is self-adjoint and
semi-positive definite. In that case, operator rBK defines a semi-inner product on HK and we can
take additional Cauchy-Schwarz inequalities on (3.7), i.e.,

rηT ď
ÿ

KPT

c¨
rBKrεK , rεK

∂
H˚

K
,HK

c¨
rBKeK , eK

∂
H˚

K
,HK

.

3.3. Optimal Alternative Operator

The sharpest bound is obtained by an operator for which the triangle inequality in Equation (3.7)
becomes an equality, namely:

ˇ

ˇ

ˇ
〈l , e〉H˚,H

ˇ

ˇ

ˇ
“
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

KPT

¨
rBKrεK , eK

∂
H˚

K
,HK

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

KPT

ˇ

ˇ

ˇ

ˇ

¨
rBKrεK , eK

∂
H˚

K
,HK

ˇ

ˇ

ˇ

ˇ

.

This means that on each element K P T , the complex quantities
¨
rBKrεK , eK

∂
H˚

K
,HK

are sharing

the same angle. It implies as well that each estimator needs to share the same angle of 〈l , e〉H˚,H.
To simplify, let us assume that they are all positive real numbers. Then, we have to find an
operator rB such that the element-wise application rBKrεK P H˚K has to compensate the variations
of eK in order to obtain a positive real number after integration. The consequence is that operator
rB “ ř

KPT R
˚
K ˝ rBK ˝RK has to be defined on each element according to eK . It will probably

occur that, if it exists, rB will not be a conventional variational form, which will make much more
complex the implementation of the method. Thus, in this work, rather than searching for the optimal
operator, we shall concentrate on finding the best possible operator within a preset family via
numerical experimentation.

3.4. Selection of the Alternative Operator

Let B be the 2D Helmholtz operator defined by (2.1) with k P R`, with a source term f P H˚, and
a QoI l P H˚, as defined in Section 2. We set the wavenumber to k “ 17π. We analyze the behavior
of rηT of Eq. 3.7 when varying the alternative operator rBα, for a given discretization T , over the
family U :

U :“
!

rBα, α P C
)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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where ¨
rBα¨ , ¨

∂
H˚,H

“ 〈∇¨ ,∇¨〉L2pΩq ` α 〈¨ , ¨〉L2pΩq ` i
a|α| 〈¨ , ¨〉L2pΓIq

.

The boundary conditions for rBα are selected to be the same as those of the original operator B.
In the following, we approximate space H by a finite element subspace richer than Hh by

increasing uniformly the polynomial order of approximation by ∆p “ 2. By an abuse of notation,
we will denote the elements of H and their approximation in the richer space with the same symbols.
Although in some cases the fine mesh should be finer in order to better estimate the error, the high
regularity of the solutions of our model problems justify such choice of fine mesh. In any case, we
emphasize that the focus of this work is on the error representations of a given QoI, and not on the
efficiency of how to compute the error function itself.

Figures 3 and 4 show the evolution of rηT with respect to α and along specific directions: in
Figure 3 the parameter α is real, whereas in Figure 4 the parameter α is purely imaginary.

The sharpest upper bounds are obtained for α “ 0 (Laplace operator) in most cases. When α is
real (see Figure 3), the Laplace operator is not delivering exactly the sharpest bound, but it is very
close to it.

Top panel of Figure 3 shows that for large |α|, (ě 105), the behavior of the alternative operator
is almost equivalent to that of the L2-sesquilinear product. If α ą 0, rBα is self-adjoint and positive
definite. For both cases (α ě 105 and α ď ´105), the alternative upper bounds are sharper than the
classical ones. If α ă 0, then we are dealing with a Helmholtz operator. To numerically resolve
Equation (3.6), we need to satisfy the Nyquist rate. When α ă ´k2 (the red area), the Nyquist
rate criterion is compromised, and the numerical resolution is untrustworthy. Thus, we restrict the
analysis to α P r´k2, 0s. The second graph (Figure 3, middle panel) zooms on this area. We observe
that bound rηT is slightly oscillating as α becomes more negative, probably because the number of
DoF per wavelength is getting smaller and the dispersion effect is stronger. The almost flat area for
α ą ´800 is rescaled in Figure 3 (bottom panel) in order to determine whether or not the Laplacian
is the operator that provides the sharpest upper bound. We observe that the minimum is not reached
for α “ 0, but the relative difference between the minimum (located at approximately 222% for
α » 550) and the value of rηT for α “ 0, rηT » 224% is negligible. Thus, for this approximation
space Hh, it seems advantageous to use the Laplacian as the alternative operator.

Figure 5 shows the evolution of rηT as a function of α under the same conditions as in Figure 3
but, in here, we modify the approximation space Hh by increasing the polynomial order p by one.
These results show the robustness of the selected alternative operator (namely, the Laplacian) with
respect to the choice of discrete space Hh.

From those numerical results, it appears that the stability of the alternative operator plays a key
role on the sharpness (or not) of the upper bounds. Indeed, unlike the Helmholtz operator, the
Laplace one does not generate any dispersion error. Thus, in the remainder of this paper, we select
the Laplacian as our alternative operator.

4. p-ADAPTIVE ALGORITHM AND IMPLEMENTATION

4.1. p-Adaptive algorithm

We consider in this work a p-adaptive strategy in which the polynomial degree in the elements that
are marked for refinement is increased by one. We start the iterative mesh-adaptation algorithm by
defining an initial coarse mesh with a given mesh size h and polynomial order p. The fine mesh is
obtained by increasing uniformly the polynomial order of the coarse grid by ∆p “ 2, as mentioned
above. We compute the solutions of the direct (3.1) and the adjoint problems (3.2) on both meshes
(coarse and fine). Then, we approximate errors e and ε by computing the difference between the
coarse and fine mesh solutions. We also estimate the alternative error rε by solving, on the fine grid,
the alternative adjoint residual problem (3.6).

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Figure 3. 2D case, rηT versus α for α P R, k “ 2π ˆ 8.5 “ 17π » 53, and around 3 DoF per wavelength
(with uniform p “ 3)

Once all error functions are estimated globally, we compute: (a) the element-wise contributions
leading to the error representations (3.5) and (3.7), and (b) the local estimators used to perform
adaptivity.

With above data, the adaptivity is performed as follows: we use the local error estimators ηK
or rηK to determine which elements need to be refined. We select all elements whose estimator is
larger than a given percentage of the largest estimator max

K
pηKq and max

K
prηKq, respectively. In

this work, we set that percentage to 40%. We then isotropically increase by ∆p “ 1 the polynomial
orders of the selected elements, and we ensure the minimum rule [40]. This adaptive approach can
be trivially implemented, and we use it here to illustrate the advantages and limitations of using
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Figure 4. 2D case, rηT pαq for α P iR, k » 17π, and around 3 DoF per wavelength (with uniform p “ 3)

alternative error representations. Of course, more sophisticated and effective adaptive processes can
be used, e.g., [51, 52, 53, 54, 55].

The adaptive process gives us an updated coarse mesh, which constitutes the initial mesh for
the subsequent adaptive iteration. We repeat this process until the required precision is reach. This
algorithm is sketched in Figure 6.

4.2. Implementation details

The method has been implemented in Fortran90 using PETSc libraries [56] for the parallel
resolution of the finite element systems. Since we need to compute the difference between the
coarse and fine mesh solutions, we have to represent the coarse solution into the fine mesh data
structure. Due to the use of hierarchical basis functions, the corresponding injection operator is
trivially implemented by simply adding zeros to the coefficients associated with the p` 1 and p` 2
DoF, leaving the remaining coefficients unchanged.

Following [40], we have implemented the 2D Projection Based Interpolation (PBI) in order to
compare it with our method. The PBI ensures, for instance, almost optimal convergence rates (up to
a logarithmic factor, see [57]) for the classical p-adaptive algorithm. Note that the quantities (3.5)
and (3.7) computed using the PBI are no longer upper bounds of the error in the QoI. They are
referred to as error indicators in the literature (cf. [58]). The PBI allows to project the fine mesh
solution into the coarse grid by combining interpolation with a local minimum energy projection.

In order to compute the alternative error estimator, we need to build and factorize the matrix
associated with the alternative operator. Thus, we cannot reuse the same matrix for the computation
of both direct and alternative adjoint errors. This is a drawback of our method, hopefully
compensated by designing an adaptive process that requires fewer DoF to reach its goal. Moreover,
since the user selects the alternative operator, it is often the case that it can be solved with high
precision via a fast (analytical or semi-analytical) method.

5. NUMERICAL RESULTS

In this section, we present the results of numerical experiments in two and three spatial dimensions.
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Figure 5. 2D case, rηT versus α for α P r´k2,`8r, k “ 17π. The top graph is produced for 3 DoF per
wavelength (with uniform p “ 2). The next graphs are obtained by increasing the approximation order p.

The Laplace operator provides a sharper upper bound for all cases.

5.1. 2D numerical results

Figure 7 shows the upper bounds of the algorithm described in Figure 6 when performing uniform
h´refinements (Figure 7a) and uniform p´refinements (Figure 7b). As mentioned in Section 3,
Figure 7b shows that using re or rε leads to almost identical results. Thus, we restrict ourselves to the
use of rε, and the representation of the dual residual Rhd . In all cases, the size h of the initial mesh
elements is selected to enforce that the discretization exhibits always at least 2.5 DoF per wavelength
(pinit “ 1, uniformly). In this way, the Nyquist criterion is satisfied, and the error eventually decays at
exponential rate with respect to p, since 2pinit ` 1 ą kh` βpkhq1{3 for some β ą 0 (see [59, 58]).
Once the pollution error vanishes, the expected rate of convergence is h2p (see [51]) for smooth
enough solutions. Figure 7b shows that the convergence rates obtained for this example when using
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Next iteration

Coarse mesh Fine mesh

Adjoint problemDirect problem

rε εe

Upper bounds

Adaptivity

Updated coarse mesh

p` 2

Alternative adjoint problem

Figure 6. Algorithm of the GOA

uniform p-refinements are smaller than expected probably due to the loss of smoothness caused by
the non smooth squared shape of the domain and the lack of regularity of the right-hand side.

From these graphics, we observe that the alternative upper bound (3.7) is much sharper in the
pre-asymptotic range than the classical one (3.5), and both upper bounds coincide when the error in
the QoI is around 1% or below (asymptotic regime).

Figure 8 shows that with the alternative error representation, the p-adaptive algorithm converges
without the need to introduce the PBI operator. When using the PBI, both algorithms converge
with a similar behavior, as illustrated in Figure 8a. We emphasize that the naive adaptive process
we considered causes the classical method to fail at converging. However, it converges when
considering the alternative error representations.

When convergence occurs, errors exhibit almost identical convergence rates as those observed for
the uniform p-refinements, see Figure 8b. Indeed, since the solution of our model is highly regular
and of uniform amplitude, quasi-optimal meshes are obtained via uniform p-refinements, and the
final adapted meshes (displayed in Figures 9b, 9c and 9d) are almost p-uniform. We remark that,
with the classical criterion, the adaptive process does not converge because it selects inappropriate
p-refinements that do not decrease the error, and the algorithm stops due to the limit of p “ 14 set
on the approximation order; see Figure 9a.

With the alternative error representation (where rB is the weak Laplace operator) without PBI,
we achieve similar results as those obtained with the classical estimate with PBI. Thus, we can
substitute the PBI, which complicates the implementation, by the alternative dual problem.

Figure 10 illustrates the distribution map of the element error estimators ηK (3.5) and ĂηK (3.7).
We observe that the maximum error is about one order of magnitude larger for the classical
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(a) Uniform h-refinements, p “ 2.
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(b) Uniform p-refinements, hk " 1.

Figure 7. 2D case, k “ 17π. Error evolution in the QoI and the upper bounds given by the different
error representations, namely, the classical bound (3.5) , the alternative bound using the residual dual

Rhd (3.7) , and the alternative bound using the residual primal Rhp (3.7) .
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(a) Error representations.
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(b) Relative error (in %) in the QoI: 100 ¨ |lpeq|{|lpuq|.

Figure 8. 2D case, k “ 17π, hk " 1. Panel (a): error representation for p-adaptivity depending on the
criterion used: classical criterion , alternative criterion , classical one using PBI , and
alternative one using PBI . Panel (b): error evolution in the QoI, |lpeq| depending on the adaptivity
criterion: uniform p-refinements , p-adaptivity using the classical error representation , p-
adaptivity using the alternative error representation based on the Laplacian( ), and p-adaptivity using
the alternative error representation based on the Laplace operator plus a positive reaction term with its

coefficient being equal to k2 ( ).

estimators, which corroborates the results described in Figure 7. We additionally observe that the
alternative method concentrates the largest errors close to the QoI, and they seem to rapidly decay
as we move below p0, 1q ˆ t0.75u. This observation is coherent with the fact that the error rε is the
solution of a diffusive problem that takes as a source the residual of the adjoint problem. Conversely,
the classical method exhibits large errors in a region that seems unrelated to the QoI. Figure 9a
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Figure 9. 2D case, k “ 17π, hk " 1. Final adapted fine meshes after p-adaptivity.

confirms that refinements occur in the aforementioned region. Apart from the extreme values, the
error distribution is quite uniform, which is consistent with the nature of both e and ε, which are
solutions of Helmholtz residual problems.

5.2. Increasing the wavenumber

In this section, we increase the wavenumber k of operator B. We employ a constant number of
DoF per wavelength in order to compare the behavior of the classical and the alternative error upper
bounds. Figure 11 illustrates that the alternative bound is significantly less affected by pollution than
the classical one and stays closer to the error in the QoI. The observed oscillations are due to the
selected QoI and depend upon the total number of wavelengths in the computational domain.

5.3. Gradient of the solution as quantity of interest

In this section, we show the robustness of the method by considering a different kind of QoI (similar
to that used in [60]). For this purpose, we consider the 2D problem described in Section 2 with the
following QoI:

〈l , w〉H˚,H “ 〈1 ,∇w〉L2pΩQoIq
@w P H.

where ΩQoI :“ p0.75, 1q2. Figure 12 shows that the upper bound provided by the alternative
representation is sharper than the classical one in the pre-asymptotic regime, as expected.
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Figure 10. 2D case, k “ 17π, p “ 1 uniformly, hk " 1. Error map representations. We select a logarithmic
scale of the error for selecting the color. The gray color has been set to separate between the elements that

are to be refined (those with darker tones) and those that will be unrefined (brighter tones).
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Figure 11. 2D case, uniform p “ 2; h is determined in order to ensure a fixed number of (approx. eight) DoF
per wavelength. Error evolution in the QoI and upper bounds for the error representation of the QoI when

the wavenumber is increasing from 71 to 250. rB is the Laplace operator.

5.4. 3D numerical results

Figure 13a shows numerical results corresponding to uniform p-refinements. Again, our method
provides sharper upper bounds in the pre-asymptotic regime than those obtained with the classical
method. The p-adaptive algorithm also exhibits a behavior similar to that observed in the 2D case
(see Figure 13b). The alternative upper bound is driving the convergence more efficiently than the
classical one.
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Figure 12. 2D case, k “ 17π, hk " 1, uniform p-refinements. Error evolution in the QoI and upper bounds
for the error representation of the QoI when the QoI is the average of the gradient on a subdomain of Ω.
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(a) Uniform p-refinements.
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(b) Error evolution in the QoI depending on the p-
adaptive criterion.

Figure 13. 3D case, k“ 6
?

3π » 32.64.

6. CONCLUSIONS

This work generalizes the classical goal-oriented procedure described in [36, 34] by introducing an
alternative operator for representing the error.

We extend the results of our previous publication [38] to the multi-dimensional Helmholtz
problem. We address the question of whether we can find an operator that provides the sharpest
upper bounds independently of the approximation space. Since this seems to be prohibitively
expensive, we propose to use the Laplacian as the alternative operator in order to represent the
dual residual. With that operator, we are not computing the sharpest upper bound, but it provides a
good trade-off between computational feasibility and obtaining sharp upper bounds.

As mentioned in Section 3, a guideline for the choice of the alternative operator is to construct an
operator that presents a better numerical stability than the original one.
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Numerical results show that error upper bounds are sharper when using the alternative
representation than with the classical one. As a result, our simple adaptive process does not need
the PBI (nor any other projection) to converge when using the alternative error representation as
indicators, whereas the classical representation fails to drive the algorithm to converge without the
PBI. The classical and alternative upper bounds coincide when reaching the asymptotic regime. As
an extension of this work, we applied the developed method to (a) a convection-dominated problem
(see Appendix A), (b) problems with discontinuous material coefficients (see Appendix B), and (c) a
geophysical application consisting of simulating sonic logging-while-drilling (LWD) measurements
(see Appendix C). We draw the same conclusions in all these examples.

One notorious advantage of our approach is its flexibility. Indeed, we can apply this technique
to a wide range of problems, including adaptivity in time domain [61, 62] or hp-adaptive
algorithms [4, 6]. We are also working on extending the proposed approach to other discretizations
such as Petrov-Galerkin, Discontinuous Galerkin, and/or some version of the Discontinuous Petrov
Galerkin method.

A. CONVECTION DOMINATED DIFFUSION PROBLEM

We consider the following model problem based on a convection dominated diffusion equation. For
Ω “ p0, 1q2,

Find u such that, for ν ą 0,
#

´ν∆u` p1, 1q ¨∇u “ 1 on Ω,

u “ 0 on BΩ.

We set H “ tu P H1pΩq, u “ 0 on BΩu and 〈¨ , ¨〉L2 the standard L2 scalar product. We define the
QoI as the integral on ΩQoI Ă Ω, which is given by the functional:

〈l , w〉H˚,H “ 〈1 , w〉L2pΩQoIq
@w P H.

Operator B P LpH,H˚q is defined as follows,

〈Bw , z〉H˚,H “ ν 〈∇w ,∇z〉L2pΩq ` 〈p1, 1q ¨∇w , z〉L2pΩq , @w, z P H.

We define the alternative operator:¨
rBw , z

∂
H˚,H

“ 〈∇w ,∇z〉L2pΩq @w, z P H,

which is the one associated with the Laplace equation with homogeneous Dirichlet boundary
conditions on BΩ. We set the QoI domain to ΩQoI “ p0.75, 1q2, so part of the boundary layer is
included. We perform uniform p- and h-refinements starting from a quasi-uniform initial mesh with
11ˆ 11 elements.

Figure 14 shows the behavior of the upper bounds with respect to diffusion parameter ν: as ν
decreases, the bounds increase, as expected.

We now set ν “ 10´4 and consider uniform p-refinements. Figure 15a shows the following four
upper bounds of the error in the QoI:

|lpeq| ď
ÿ

K

|〈BKe , ε〉| (A.1)

ď
ÿ

K

pν }∇ε}L2pKq ` }ε}L2pKqq }∇e}L2pKq (A.2)
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Figure 14. 2D case, convection-dominated diffusion problem. Uniform p-refinements varying the diffusion
coefficient.

and

|lpeq| ď
ÿ

K

ˇ

ˇ

ˇ

¨
rBKe , rε

∂ˇ
ˇ

ˇ
(A.3)

ď
ÿ

K

}∇e}L2pKq }∇rε}L2pKq (A.4)
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(a) Uniform p-refinement.
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(b) Uniform h-refinements.

Figure 15. 2D case, convection-dominated diffusion problem. Uniform refinements for ν “ 10´4.

Upper bounds (A.1) and (A.3) are non monotonous probably due to the lack of control on the
angle between the errors. However, the monotonicity is recovered when considering the upper
bounds (A.2) and (A.4), although those upper bounds are less sharp. In all cases, we nevertheless
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observe that the alternative upper bounds are sharper than the classical ones. Moreover, if rB also
includes an L2 inner product term as follows,¨

rBw , z
∂
H˚,H

“ 〈∇w ,∇z〉L2pΩq ` 〈w , z〉L2pΩq @w, z P H,

the alternative bound, it is still sharper than the classical one. Nonetheless, the Laplace alternative
operator still provides the best results (see Figure 15a). For h-refinements (see Figure 15b), we
observe that upper bound (A.3), although not sharp, is still sharper than upper bound (A.1).
However, there is no oscillating behavior due to the selected mesh size. For a finer size, we again
observe the previously mentioned oscillations.

We now execute the p-adaptive process for ν “ 10´7 with an initial mesh geometrically graded
from the boundaries towards the interior of the domain in a way that the boundary layers are
captured. Figure 16 shows the evolution of the upper bounds driving the adaptivity. The classical
method does not converge, whereas the alternative criterion is successful even if not sharp at first
glance. Additionally, the number of DoF needed for achieving a given precision is lower for the
adaptive discretization than for the uniform refinement case. This occurs because features of the
solution are localized unlike the solution of the Helmholtz problem
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Figure 16. 2D case, convection-dominated diffusion. p-adaptivity with ν “ 10´7.

B. DISCONTINUOUS COEFFICIENTS

We consider the following general model problem governed by a diffusion convection reaction
equation with mixed boundary conditions: For Ω “ p0, 1q2, with sΓD

Ť

sΓI “ BΩ, Γ̊D
Ş

Γ̊I “ H.

Find u such that, for α, β, γ P L2pΩq,
$

’

&

’

%

´∇pα ¨∇uq ` βp1, 1q ¨∇u` γu “ 1 in Ω,

u “ 0 on ΓD,

Bnu` i
a|γ|u “ 0 on ΓI ,

In particular, for ΓI “ H and γ “ 0, we recover our previous convection diffusion problem, and for
β “ 0 and γ ă 0, we have again the Helmholtz equation.
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We set H :“ tu P H1pΩq, u|ΓD
“ 0u and 〈¨ , ¨〉L2 the standard L2 scalar product. We define the QoI

as the integral on ΩQoI Ă Ω, which is given by the functional

〈l , w〉H˚,H “ 〈1 , w〉L2pΩQoIq
@w P H.

In the following, we set the QoI domain to ΩQoI “ p0.75, 1q2. Operator B P LpH,H˚q is defined as
follows,

〈Bw , z〉H˚,H “ 〈α∇w ,∇z〉L2pΩq ` 〈βp1, 1q ¨∇w , z〉L2pΩq

` 〈γw , z〉L2pΩq ` i
¨
a|γ|w , z

∂
L2pΓIq

, @w, z P H.

We define the following alternative operator: for rα, rβ, rγ P L2pΩq,¨
rBw , z

∂
H˚,H

“ 〈rα∇w ,∇z〉L2pΩq `
¨
rβp1, 1q ¨∇w , z

∂
L2pΩq

` 〈rγw , z〉L2pΩq ` i
¨
a|rγ|w , z

∂
L2pΓIq

, @w, z P H.

The coefficients are considered to be piecewise-constant, as illustrated in Figure 17.

Ω

pα2, β2, γ2q

pα1, β1, γ1q

QoI

Figure 17. Domain with two materials.

We first set ΓI “ H, γ “ 0, β “ 1 with the following piecewise-constant diffusion coefficient:
α “ α11p0,1qˆp0,0.5q ` α21p0,1qˆp0.5,1q. Figure 18a shows the upper bounds for α1 “ 10´4, α2 “
10´7, rβ “ rγ “ 0, and rα “ α. The alternative upper bound is sharper than the classical one. As the
discontinuity in the coefficients induce a loss of stability, both upper bounds are less effective than in
the constant coefficient case. However, the alternative upper bound is less affected than the classical
one.

We now consider a Helmholtz problem by setting

ΓI “
`t1u ˆ p0, 1q˘

ď

`p0, 1q ˆ t1u˘,
α “ 1, β “ 0 and a piecewise constant reaction coefficient:

γ “ γ11p0,1qˆp0,0.5q ` γ21p0,1qˆp0.5,1q.

Figure 18b shows the upper bounds for γ1 “ ´2842 and γ2 “ ´5053, rβ “ rγ “ 0, and rα “ α.
For this case, there are no significant differences between continuous or discontinuous coefficients.
The alternative method is producing sharper upper bounds for both cases, and we again observe that
both bounds coincide in the asymptotic regime (when the error in the QoI is around 1%).
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(a) Convection-dominated diffusion problem with
a discontinuous diffusion coefficient pα “ 10´4

¨

1p0,1qˆp0,0.5q ` 10´7
¨ 1p0,1qˆp0.5,1qq.
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(b) Helmholtz problem with discontinuous materials
(γ “ 2 842 ¨ 1p0,1qˆp0,0.5q ` 5053 ¨ 1p0,1qˆp0.5,1q).

Figure 18. 2D case. Upper bounds corresponding to the case of uniform p-refinements for discontinuous
coefficients.

C. GEOPHYSICAL BOREHOLE APPLICATION: FREQUENCY DOMAIN ACOUSTICS

In this appendix, we apply our adaptive strategy to the simulation of sonic logging-while-drilling
(LWD) measurements, as described in [63, 64, 65]. To simplify the implementation, we focus only
on a purely acoustic media (without elasticity).

C.1. Model problem

We assume axial symmetry around the center of the borehole, so we can reduce the original 3D
formulation to two spatial dimensions using cylindrical coordinates. To truncate the computational
domain, we employ a Perfectly Matched Layer (PML) (see [66]). The logging instrument contains
a transmitter tx and an array of 13 receivers prixqi“1,13.

We consider the following problem with mixed boundary conditions: for Ω Ă R2, with boundary
sΓD

Ť

sΓaxis “ BΩ, Γ̊D
Ş

Γ̊axis “ H, where Γaxis is the boundary corresponding to the symmetry axis.

Find p such that, for c P L8pΩq, c ‰ 0, f P R`,
$

’

&

’

%

´∆p´ 2π¨f
c p “ 1tx in Ω

p “ 0 on ΓD,

∇p ¨ ~n “ 0 on Γaxis,

where 1tx is the characteristic function over the area occupied by transmitter tx and ~n is the
outgoing normal unit vector. We define the QoI as the sum over the array of receivers of the average
value of the solution at each receiver.

〈l , φ〉H˚,H “
Nrx
ÿ

i“1

1
ˇ

ˇΩrix
ˇ

ˇ

ż

Ω
rix

φ, @φ P H

where Ωrix is the domain occupied by the i-th receiver. We set the frequency of the transmitter
to f “ 20 kHz. The coefficient c varies throughout the domain depending on the propagation
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velocity of the wave in each layer. The domain is composed of three different layers: The tool (with
associated velocity ctool), the fluid surrounding the tool with velocity cfluid, and the rock formation
with velocity cformation (see Table I). The computational domain is described in Figure 19.

ctool cfluid cformation

Velocities (m/s) 5862 1524 4354

Table I. Propagation velocities (m/s) of the materials for LWD acoustic measurements.
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Figure 19. Sketch of the computational domain for acoustic LWD measurements, composed of three
different materials: The logging tool, the borehole fluid, and the rock formation. The axis of symmetry is
located on the left side of the domain, and coincides with the tool center. We have added a PML to truncate

the computational domain. In red, we draw the transmitter and in blue the array of receivers.

C.2. Numerical Results

Figure 20 shows the evolution of the error bounds throughout the adaptive process. We plot upper
bounds given by Eqs. (3.5) and (3.7) both when using p-adaptivity with and without the PBI operator
(in the case of the PBI, the displayed curves are estimates rather than strict upper bounds). The
results are similar to the ones of Figure 8a. The classical criterion fails to drive the adaptive process.
On the other hand, both the alternative and the PBI criteria succeed. The resulting meshes are shown
in Figure 21. We observe that the classical criterion (see Figure 21a) performs refinements only
within the borehole, with special emphasis on the area occupied by the fluid. When the adaptive
process is successful (see Figures 21b, 21c and 21d), refinements occur almost uniformly throughout
the entire computational domain, except on the surroundings of the junctions between the PML, the
logging instrument, and the fluid. The solution at those points is probably singular due to the large
variation of the coefficients, and further refinements are required.
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43. Ihlenburg F, Babuška I. Dispersion analysis and error estimation of Galerkin finite element methods for the
Helmholtz equation. Internat. J. Numer. Methods Engrg. 1995; 38(22):3745–3774, doi:10.1002/nme.1620382203.
URL http://dx.doi.org/10.1002/nme.1620382203.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

http://dx.doi.org/10.1002/num.22002
http://dx.doi.org/10.1002/num.22002
http://dx.doi.org/10.1137/060675666
http://dx.doi.org/10.1137/15M1021982
http://dx.doi.org/10.1137/15M1021982
http://dx.doi.org/10.1007/s004660050288
http://dx.doi.org/10.1007/s004660050288
http://dx.doi.org/10.1016/S0045-7825(97)00086-8
http://dx.doi.org/10.1016/S0045-7825(99)00270-4
http://dx.doi.org/10.1016/S0922-5382(98)80011-1
http://dx.doi.org/10.1016/S0764-4442(99)80279-1
http://dx.doi.org/10.1016/S0764-4442(99)80279-1
http://dx.doi.org/10.1016/S0045-7825(98)00244-8
http://dx.doi.org/10.1002/(SICI)1097-0363(19990915)31:1<17::AID-FLD953>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1097-0363(19990915)31:1<17::AID-FLD953>3.0.CO;2-X
http://dx.doi.org/10.1016/S0045-7825(98)00343-0
http://dx.doi.org/10.1002/(SICI)1097-0363(19990915)31:1<3::AID-FLD952>3.3.CO;2-2
http://dx.doi.org/10.1002/(SICI)1097-0363(19990915)31:1<3::AID-FLD952>3.3.CO;2-2
http://dx.doi.org/10.1016/S0898-1221(00)00317-5
http://dx.doi.org/10.1016/S0898-1221(00)00317-5
http://dx.doi.org/10.1007/978-3-662-05189-4_5
http://dx.doi.org/10.1007/978-3-662-05189-4_5
http://www.sciencedirect.com/science/article/pii/S0898122115001017
http://www.sciencedirect.com/science/article/pii/S0898122115001017
http://dx.doi.org/10.1201/9781420011692
http://dx.doi.org/10.1016/0898-1221(95)00144-N
http://dx.doi.org/10.1016/0898-1221(95)00144-N
http://dx.doi.org/10.1002/nme.1620382203


GOA USING UNCONVENTIONAL ERROR REPRESENTATIONS 25
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46. Ihlenburg F, Babuška I. Finite element solution of the Helmholtz equation with high wave number. II. The
h-p version of the FEM. SIAM J. Numer. Anal. 1997; 34(1):315–358, doi:10.1137/S0036142994272337. URL
http://dx.doi.org/10.1137/S0036142994272337.
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