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Némethi’s division algorithm for zeta-functions of plumbed
3-manifolds

T. László and Zs. Szilágyi

Abstract

A polynomial counterpart of the Seiberg-Witten invariant associated with a negative definite
plumbing 3-manifold has been proposed by earlier work of the authors. It is provided by a
special decomposition of the zeta-function defined by the combinatorics of the manifold. In this
article we give an algorithm, based on multivariable Euclidean division of the zeta-function, for
the explicit calculation of the polynomial, in particular for the Seiberg–Witten invariant.

1. Introduction

The main motivation of the present article is to understand a multivariable division
algorithm, proposed by A. Némethi (cf. [24], [1]), for the calculation of the normalized Seiberg–
Witten invariant of a negative definite plumbed 3-manifold. The input is a multivariable
zeta-function associated with the manifold and the output is a (Laurent) polynomial which,
in particular, is a polynomial ‘categorification’ of the Seiberg–Witten invariant in the sense
that the sum of its coefficients equals with the normalized Seiberg–Witten invariant. This
polynomial was defined by the authors in [13] and called the polynomial part as a possible
solution for the multivariable ‘polynomial- and negative-degree part’ decomposition problem
for the zeta-function (cf. [1, 11, 13], see Section 2.4).

The one-variable algorithm goes back to the work of Braun and Némethi [1]. In that case
the polynomial part is simply given by a division principle. However, in general, we show that
in order to recover the multivariable polynomial part of [13] one constructs first a ‘quotient’
polynomial by division and then one has to modify the coefficients of its monomial terms
with suitable multiplicity according to the corresponding exponents and the structure of the
plumbing graph.

In the sequel, we give some details about the algorithm and state further results of the
present note.

1.1.

Let M be a closed oriented plumbed 3-manifold associated with a connected negative definite
plumbing graph Γ. Or, equivalently, M is the link of a complex normal surface singularity, and
Γ is its dual resolution graph. Assume that M is a rational homology sphere, i.e. Γ is a tree and
all the plumbed surfaces have genus zero. Let V be the set of vertices of Γ, δv be the valency of a
vertex v ∈ V, and we distinguish the following subsets: the set of nodes N := {n ∈ V : δn ≥ 3}
and the set of ends E = {v ∈ V : δv = 1}.
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We consider the plumbed 4-manifold X̃ associated with Γ. Its second homology L :=
H2(X̃,Z) is a lattice, freely generated by the classes of 2-spheres {Ev}v∈V , endowed with the
nondegenerate negative definite intersection form (, ). The second cohomology L′ := H2(X̃,Z)
is the dual lattice, freely generated by the (anti)dual classes {E∗v}v∈V , where we set (E∗v , Ew) =
−δvw, the negative of the Kronecker delta. The intersection form embeds L into L′ and
H := L′/L ' H1(M,Z). Denote the class of l′ ∈ L′ in H by [l′]. We denote by swnormh (M)
the normalized Seiberg–Witten invariants of M indexed by the group elements h ∈ H, see
Section 2.2.

The multivariable zeta-function associated with M (or Γ) was defined by Campillo, Delgado
and Gusein-Zade [6, 7] and Némethi [21] via the following formula

f(t) =
∏
v∈V

(1− tE
∗
v )δv−2, (1.1)

where tl
′

:=
∏
v∈V t

lv
v for any l′ =

∑
v∈V lvEv ∈ L′. (Notice that in a general situation of [6,

7] the exponents of the brackets are defined by −χ(
.
Ev), the negative of the topological Euler

characteristic of the ‘smooth part’
.
Ev of Ev, i.e., Ev minus intersection points with all other

components of the exceptional divisor. Hence, in our case when the link M is a rational
homology sphere, this equals δv − 2.) One has a natural decomposition into its h-equivariant
parts f(t) =

∑
h∈H fh(t), see Subsection 2.3.1. For the purpose to decode the Seiberg–Witten

invariants of M from f (c.f. Section 2.2), [11, Reduction theorem 5.4.2] has shown that the
variables of fh can be reduced to the variables of the nodes of the graph. Therefore, we restrict
our discussions to the reduced zeta-functions defined by fh(tN ) = fh(t)|tv=1,v /∈N . Here we

introduce notation tl
′

N :=
∏
n∈N t

ln
n .

1.2.

The multivariable polynomial part Ph(tN ) associated with fh(tN ) (defined by [13, Formula
(32)], see also Formula (2.6)) is mainly a combination of the one- and two-variable cases studied
by [1] and [11] corresponding to the structure of the orbifold graph Γorb. The vertices of Γorb

are the nodes of Γ and two of them are connected by an edge if the corresponding nodes in Γ
are connected by a path which consists only vertices with valency δv = 2. The main property
of the polynomial part reads as Ph(1) = swnormh (M), see Section 2.4.

1.3. Multivariable division algorithm

On L⊗Q we consider the following partial order: for any l1, l2 one writes l1 > l2 if l1 − l2 =∑
v∈V `vEv with all `v > 0. We introduce a multivariable division algorithm in Section 3.1,

which provides a unique decomposition (Lemma 3.1)

fh(tN ) = P+
h (tN ) + fnegh (tN ),

where P+
h (tN ) =

∑
β pβt

β
N is a Laurent polynomial such that β 6< 0 for every monomial and

fnegh (tN ) is a rational function with negative degree in tn for all n ∈ N .
This newly introduced quotient P+

h (tN ) in general is different from the earlier defined
polynomial part Ph(tN ), however they are related. In Theorem 3.4 we show that the polynomial
part Ph(tN ) can be recovered from the easier to compute quotient P+

h (tN ) by taking its
monomial terms with multiplicity s involving the structure of Γorb (Definition 3.2). More
precisely,

Ph(tN ) =
∑
β

s(β)pβt
β
N .
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1.4. Comparing the polynomial part and the quotient polynomial

A consequence of the above algorithm (cf. Remark 3.5(i)) is that in general Ph is ‘thicker’
than P+

h , in the sense that s(β) ≥ 1 for all the exponents β of P+
h . This motivates the study

of their comparison on two different classes of graphs.
In the first case we assume that Γorb is a bamboo, that is, there are no vertices with valency

greater or equal than 3. Notice that most of the examples considered in the aforementioned
articles were taken from this class. We prove in Theorem 4.1 that for these graphs the two
polynomials agree. Thus, the Seiberg–Witten invariant calculation is provided only by the
division.

The second class is defined by a topological criterion: they are the graphs of the 3-manifolds
S3
−p/q(K) obtained by (−p/q)-surgery along the connected sum K of some algebraic knots. We

provide a concrete example of this class for which one has Ph 6= P+
h for some h, see Section

4.2. More precisely, Theorem 4.8 proves that if we look at part of the polynomials consisting
of monomials for which the exponent of the variable associated with the ‘central’ vertex of the
graph (cf. Subsection 4.3.2) is non-negative, then they agree. (See Subsection 4.3.4 for precise
formulation.) In fact, by Proposition 4.10, for the canonical class h = 0 these are the only
monomials, hence P0 = P+

0 .

2. Preliminaries

2.1. Links of normal surface singularities

For more details regarding plumbed 3-manifolds, plumbing graphs and their relations with
normal surface singularities see [9, 19, 20, 26].

2.1.1. Let Γ be a connected negative definite plumbing graph with vertices V = V(Γ).
By plumbing disk bundles along Γ, we obtain a smooth 4–manifold X̃ whose boundary is an
oriented plumbed 3–manifold M . Γ can be realized as the dual graph of a good resolution
π : X̃ → X of some complex normal surface singularity (X, o) and M is called the link of the
singularity. In our study, we assume that M is a rational homology sphere, or, equivalently, Γ
is a tree and all the genus decorations are zero.

Recall that L := H2(X̃,Z) ' Z〈Ev〉v∈V is a lattice, freely generated by the classes of the
irreducible exceptional divisors {Ev}v∈V (i.e. classes of 2-spheres), with a nondegenerate
negative definite intersection form I := [(Ev, Ew)]v,w∈V . L′ := H2(X̃,Z) ' Hom(L,Z) is the
dual lattice, freely generated by the (anti)duals {E∗v}v∈V . L is embedded in L′ by the
intersection form (which extends to L⊗Q ⊃ L′) and their finite quotient is H := L′/L '
H2(∂X̃,Z) ' H1(M,Z).

2.1.2. The determinant of a subgraph Γ′ ⊆ Γ is defined as the determinant of the negative
of the submatrix of I with rows and columns indexed with vertices of Γ′, and it will be denoted
by detΓ′ . In particular, detΓ := det(−I) = |H|. We will also consider the following subgraphs:
since Γ is a tree, for any two vertices v, w ∈ V there is a unique minimal connected subgraph
(path connecting v and w) [v, w] with vertices {vi}ki=0 such that v = v0, w = vk and vivi+1 are
edges in the graph for i = 0, . . . , k − 1. Similarly, we also introduce notations [v, w), (v, w] and
(v, w) for the complete subgraphs with vertices {vi}k−1

i=0 , {vi}ki=1 and {vi}k−1
i=1 respectively.

The inverse of I has entries (I−1)vw = (E∗v , E
∗
w), all entries are negative. Moreover, they can

be computed using determinants of subgraphs as (cf. [9, page 83])

− (E∗v , E
∗
w) =

detΓ\[v,w]

detΓ
. (2.1)
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2.1.3. We can consider the following partial order on L⊗Q: for any l1, l2 one writes
l1 ≥ l2 if l1 − l2 =

∑
v∈V `vEv with all `v ≥ 0. The Lipman (anti-nef) cone S ′ is defined by

{l′ ∈ L′ : (l′, Ev) ≤ 0 for all v} and it is generated over Z≥0 by the elements E∗v . We use
notation S ′R := S ′ ⊗ R for the real Lipman cone.

2.1.4. Let σ̃can be the canonical spinc-structure on X̃. Its first Chern class c1(σ̃can) =
−K ∈ L′, where K is the canonical class in L′ defined by the adjunction formulas (K +
Ev, Ev) + 2 = 0 for all v ∈ V. The set of spinc-structures Spinc(X̃) of X̃ is an L′-torsor, i.e.
if we denote the L′-action by l′ ∗ σ̃, then c1(l′ ∗ σ̃) = c1(σ̃) + 2l′. Furthermore, all the spinc-
structures of M are obtained by restrictions from X̃. Spinc(M) is an H-torsor, compatible
with the restriction and the projection L′ → H. The canonical spinc-structure σcan of M is
the restriction of the canonical spinc-structure σ̃can of X̃. Hence, for any σ ∈ Spinc(M) one
has σ = h ∗ σcan for some h ∈ H. For more details regarding spinc-structures we refer to [10,
page 415].

2.2. Seiberg–Witten invariants of normal surface singularities

For any closed, oriented and connected 3-manifold M we consider the Seiberg–Witten
invariant sw : Spinc(M)→ Q, σ 7→ swσ(M). In the case of rational homology spheres, it is
the signed count of the solutions of the ‘3-dimensional’ Seiberg–Witten equations, modified by
the Kreck–Stolcz invariant (cf. [15, 28]).

Since its calculation is difficult using the original definition, several topological/combinatorial
interpretations have been invented in the last decades. E.g., [28] has shown that for rational
homology spheres sw(M) is equal with the Reidemeister–Turaev torsion normalized by the
Casson–Walker invariant which, in some plumbed cases, can be expressed in terms of the graph
and Dedekind–Fourier sums ([16, 26]). Furthermore, there exist surgery formulas coming from
homology exact sequences (e.g. Heegaard–Floer homology, monopole Floer homology, lattice
cohomology, etc.), where the involved homology theories appear as categorifications of the
(normalized) Seiberg–Witten invariant.

In the case when M is a rational homology sphere link of a normal surface singularity
(X, o), different type of surgery ([1, 12]) and combinatorial formulas ([11, 13]) have been
proved expressing the strong connection of the Seiberg–Witten invariant and the zeta-
function/Poincaré series associated with M ([22]). This connection will be explained in the
next section. Moreover, we emphasize that the Seiberg–Witten invariant plays a crucial role in
the intimate relationship between the topology and geometry of normal surface singularities
since it can be viewed as the topological ‘analogue’ of the geometric genus of (X, o), cf. [26].

For different purposes we may use different normalizations of the Seiberg–Witten invariant.
If we are looking its relation with the geometric genus of the singularity (c.f. [23, Remark
3.2.8]), or, with the zeta-function f (c.f. [11, Corollary 5.2.1]) it is natural to consider the
following: for any class h ∈ H = L′/L we define the unique element rh ∈ L′ characterized by
rh ∈

∑
v[0, 1)Ev with [rh] = h, then

swnormh (M) := − (K + 2rh)2 + |V|
8

− sw−h∗σcan(M) (2.2)

is called the normalized Seiberg–Witten invariant of M associated with h ∈ H.

2.3. Zeta-functions and Poincaré series

2.3.1. Definitions and motivation We have already defined in Section 1.1 the multivariable
zeta-function f(t) associated with the manifold M . Its multivariable Taylor expansion at the
origin Z(t) =

∑
l′ pl′t

l′ ∈ Z[[L′]] is called the topological Poincaré series, where Z[[L′]] is the

Z[L′]-submodule of Z[[t
±1/|H|
v : v ∈ V]] consisting of series

∑
l′∈L′ al′t

l′ with al′ ∈ Z for all
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l′ ∈ L′. It decomposes naturally into Z(t) =
∑
h∈H Zh(t), where Zh(t) =

∑
[l′]=h pl′t

l′ . By
Subsection 2.1.3, Z(t) is supported in S ′, hence Zh(t) is supported in (l′ + L) ∩ S ′, where
l′ ∈ L′ with [l′] = h. This decomposition induces a decomposition f(t) =

∑
h∈H fh(t) on the

zeta-function level as well, where explicit formula for the rational function fh(t) is provided by
[14, Theorem 5.0.1].

The zeta-function and its series were introduced by the work of Némethi [21], motivated
by singularity theory. For a normal surface singularity (X, o) with fixed resolution graph Γ
we may consider the divisorial Hilbert series H(t) (for more details see e.g. [8], [6] and [23,
Section 2 and 3]) which can be connected with the topology of the link M by introducing
the series P(t) = −H(t) ·

∏
v∈V(1− t−1

v ) ∈ Z[[L′]]. The point is that, for h = 0, Z0(t) serves as
the ‘topological candidate’ for P(t): they agree for several class of singularities, e.g. for splice
quotients (see [23]), which contain all the rational, minimally elliptic or weighted homogeneous
singularities.

For more details regarding to this theory we refer to [6, 7, 21, 23].

2.3.2. Counting functions, Seiberg–Witten invariants and reduction For any h ∈ H we
define the counting function Qh of the coefficients of Zh(t) =

∑
[l′]=h pl′t

l′ by x 7→ Qh(x) :=∑
l′ 6≥x, [l′]=h pl′ . This sum is finite since {l′ ∈ S ′ : l′ � x} is finite by Subsection 2.1.3.
Its relation with the Seiberg–Witten invariant is given by a powerful result of Némethi [22]

saying that if x ∈ (−K + int(S ′)) ∩ L then

Qh(x) = χK+2rh(x) + swnormh (M), (2.3)

where χK+2rh(x) := −(K + 2rh + x, x)/2. Thus, Qh(x) is a multivariable quadratic polynomial
on L with constant term swnormh (M). Although Formula (2.3) only shows that Qh is a
polynomial on the shifted cone, the new approach of [11] is to construct Qh as an Ehrhart
type (quasi)polynomial on certain chambers associated with Zh. More precisely, there exists a
conical chamber decomposition of the real cone S ′R = ∪τCτ , a sublattice L̃ ⊂ L and l′∗ ∈ S ′ such

that Qh(l′) is a polynomial on L̃ ∩ (l′∗ + Cτ ), say QCτh (l′). This allows to define the multivariable
periodic constant ([11, Definition 4.4.1]) by pcCτ (Zh) := QCτh (0) associated with h ∈ H and Cτ .
Moreover, Zh(t) is rather special in the sense that all QCτh are equal for any Cτ . In particular,
we say that there exists the periodic constant pcS

′
R(Zh) := pcCτ (Zh) associated with S′R, and

in fact, it is equal to swnormh (M).
We also notice that Formula (2.3) has a geometric analogue which expresses the geometric

genus of the complex normal surface singularity (X, o) from the series P(t) (cf. [23]).
[11, Reduction Theorem 5.4.2] has shown that from the point of view of Formula (2.3) the

number of variables of the zeta-function (or Poincaré series) can be reduced to the number of
nodes |N |. Thus, if we define the reduced zeta-function and reduced Poincaré series by

fh(tN ) = fh(t) |tv=1,v /∈N and Zh(tN ) := Zh(t) |tv=1,v /∈N ,

then there exists the periodic constant of Zh(tN ) associated with the projected real Lipman
cone πN (S′R), where πN : R〈Ev〉v∈V → R〈Ev〉v∈N is the natural projection along the linear
subspace R〈Ev〉v/∈N , and

pcπN (S′R)(Zh(tN )) = pcS
′
R(Zh(t)) = swnormh (M).

We set notation txN := tπN (x) for any x ∈ L′.
The above identity allows us to consider only the reduced versions in our study, which has

several advantages: the number of reduced variables is drastically smaller, hence reduces the
complexity of the calculations; reflects to the complexity of the manifold M (e.g. in case of
Seifert 3-manifolds, it is enough to consider one variable); also, for special classes of singularities
the reduced series can be compared with certain geometric series (or invariants), cf. [21].
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2.4. ‘Polynomial-negative degree part’ decomposition

2.4.1. One-variable case Let s(t) be a one-variable rational function of the form B(t)/A(t)
with A(t) =

∏d
i=1(1− tai) and ai > 0. Then by [1, Lemma 7.0.2] one has a unique decomposi-

tion s(t) = P (t) + sneg(t), where P (t) is a polynomial and sneg(t) = R(t)/A(t) has negative
degree, i.e. deg(R) < deg(A), with vanishing periodic constant (the one-variable case was
defined in [27, 29]). Hence, the periodic constant pc(s) (associated with the Taylor expansion
of s and the cone R≥0) equals P (1). P (t) is called the polynomial part while the rational
function sneg(t) is called the negative degree part of the decomposition. The decomposition
can be deduced easily by the following division on the individual rational fractions:

tb∏
i(1− tai)

= − tb−ai0∏
i6=i0(1− tai)

+
tb−ai0∏
i(1− tai)

=
∑
xi≥1∑
i xiai≤b

p(xi) · t
b−

∑
i xiai +

negative degree

rational function
,

(2.4)
for some coefficients p(xi) ∈ Z.

2.4.2. Multivariable case The idea towards the multivariable generalization goes back to
the theory developed in [11], saying that the counting functions associated with zeta-functions
are Ehrhart-type quasipolynomials inside the chambers of an induced chamber-decomposition
of L⊗ R. Moreover, the previous one-variable division can be generalized to two-variable
functions of the form s(t) = B(t)/(1− ta1)d1(1− ta2)d2 with ai > 0. In particular, for fh(tN )
viewed as a function in variables tn and tn′ , where n, n′ ∈ N and there is an edge nn′ connecting
them in Γorb, where Γorb is the orbifold graph defined in Section 1.2. (For more details regarding
two-variable division see [11, Section 4.5] and [13, Lemma 23]).

For more variables, the direct generalization using a division principle for the individual
rational terms seems to be hopeless because the (Ehrhart) quasipolynomials associated with
the counting functions can not be controlled inside the difficult chamber decomposition of S ′R.

Nevertheless, the authors in [13] have proposed a decomposition

fh(tN ) = Ph(tN ) + f−h (tN ) (2.5)

which defines the polynomial part as

Ph(tN ) =
∑

nn′ edge of Γorb

Pn,n
′

h (tN )−
∑
n∈N

(δn,N − 1)Pnh (tN ), (2.6)

where δn,N is the number of neighbours of n in Γorb, Pnh (tN ) for any n ∈ N are the polynomial

parts given by the decompositions of fh(tN ) as a one-variable function in tn, while Pn,n
′

h (tN )
are the polynomial parts viewed fh(tN ) as a two-variable function in tn and tn′ for any n, n′ ∈
N so that they are connected by an edge in Γorb. Then [13, Theorem 24] states the main
property of the decomposition

Ph(1) = swnormh (M). (2.7)

3. Decomposition by multivariable division and proof of the algorithm

In this section we prove the main algorithm which expresses the multivariable polynomial
part P of [13] in terms of the quotient polynomial P+ which will be constructed in the sequel
by the multivariable Euclidean division, and a certain multiplicity function.

3.1. Multivariable Euclidean division

We consider two Laurent polynomials A(tN ) and B(tN ) supported on the lattice πN (L′).
The partial order l1 > l2 if l1 − l2 =

∑
v∈V `vEv with `v > 0 for all v ∈ V on L⊗Q induces a
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partial order on monomial terms and we assume that A(tN ) has a unique maximal monomial
term with respect to this partial order denoted by Aat

a
N such that a > 0.

We introduce the following multivariable Euclidean division algorithm. We start with
quotient C = 0 and remainder R = 0. For a monomial term Bbt

b
N of B(tN ) if b 6< a then we

subtract (Bbt
b
N /Aat

a
N ) ·A(tN ) from B(tN ) and we add Bbt

b
N /Aat

a
N to the quotient C(tN ),

otherwise we pass Bbt
b
N from B(tN ) to the remainder R(tN ). By the assumption on A(tN )

the algorithm terminates in finite steps and gives a unique decomposition

B(tN ) = C(tN ) ·A(tN ) +R(tN ) (3.1)

such that C(tN ) is a supported on {l′ ∈ πN (L′) : l′ 6< 0} and R(tN ) is supported on {l′ ∈
πN (L′) : l′ < a}.

The following decomposition generalizes the one- and two-variable cases.

Lemma 3.1. For any h ∈ H there exists a unique decomposition

fh(tN ) = P+
h (tN ) + fnegh (tN ), (3.2)

where P+
h (tN ) =

∑
β∈Bh pβt

β
N is a Laurent polynomial such that for each β ∈ Bh we have

β 6< 0 and fnegh (tN ) is a rational function with negative degree in tn for all n ∈ N .

Proof. First of all, we use [14, Theorem 5.0.1] that for any h ∈ H one can represent fh(tN )
as a rational function in the following form

fh(tN ) = trhN ·
∑
`

b`t
`
N /

∏
n∈N

(1− tanN ),

where `, an ∈ Z〈En〉n∈N so that an = λnπN (E∗n) for some λn > 0, ` ∈ R≥0〈an〉n∈N and b` ∈ Z.
(Since the shape of the formula is sufficient for our purpose, for its precise significance we refer

to [14]). Note that A(tN ) =
∏
n∈N (1− tanN ) has a unique maximal term (−1)|N |t

∑
n∈N an

N with∑
n∈N an > 0. Thus, by the above multivariable Euclidean division we can write

trhN
∑
`

b`t
`
N = P+

h (tN ) ·
∏
n∈N

(1− tanN ) +Rh(tN ) (3.3)

and we set fnegh (tN ) := Rh(tN )∏
n∈N (1−tanN )

.

The uniqueness is followed by the assumptions on P+
h and fnegh . Indeed, if we assume P+

h +
fnegh = 0 then fnegh is a polynomial and it has monomial terms with negative exponents in
every variable, which contradicts to the assumption on P+

h . Hence, they must be zero.

3.2. Multiplicity and relation to the polynomial part

We will show that the multivariable polynomial part Ph can be computed from the
multivariable quotient P+

h by taking its monomial terms with a suitable multiplicity. We start
by defining on the set of nodes the following type of partial orders {N ,�}. Choose a node
n0 ∈ N and orient edges of Γorb (cf. Section 1.2) towards the direction of n0. This induces a
partial order on the set of nodes: n � n′ if there is an edge in Γorb connecting them, oriented
from n to n′. Note that n0 is the unique minimal node with respect to this partial order.

Definition 3.2. We fix a node n0 ∈ N , thus a partial order {N ,�} corresponding to it.
Associated with a monomial tβN =

∏
n∈N t

βn
n we define first the following ‘node’ and ‘edge’

sign-functions. Set sn(β) := 1 if βn ≥ 0 and 0 otherwise. For any n, n′ ∈ N with n � n′ we
define sn�n′(β) := 1 if βn ≥ 0 and βn′ < 0, and 0 otherwise. Finally, these two sign-functions
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define the multiplicity function by the formula

s(β) = sn0
(β) +

∑
n�n′

sn�n′(β).

Remark 3.3.
(i) In fact, the multiplicity function s does not depend on the chosen partial order {N ,�}.

This can be checked easily for two partial orders with unique minimal nodes connected
by an edge in Γorb.

(ii) There is another interpretation of the multiplicity s(β): if we consider the maximal
connected subgraphs Γorbi (β) of Γorb such that for any vertex n of Γorbi (β) one has
βn ≥ 0, then s(β) is the number of these subgraphs. Indeed, fix a partial order {N ,�}
with unique minimal node n0. Then sn0(β) contributes 1 to s(β) exactly when there
is a subgraph Γorbi (β) having n0 as vertex. Moreover, sn�n′(β) contributes 1 to s(β)
precisely when n is the unique minimal node of a subgraph Γorbi (β).

Theorem 3.4. Consider the multivariable quotient P+
h (tN ) =

∑
β∈Bh pβt

β
N of fh. Then

the polynomial part defined in Formula (2.6) has the following form

Ph(tN ) =
∑
β∈Bh

s(β)pβt
β
N .

Proof. Recall that the polynomial part Ph(tN ) is defined in Formula (2.6) using the

polynomials Pn
′

h (tN ) and Pn,n
′

h (tN ) for any n, n′ ∈ N for which there exists an edge connecting

them in Γorb. Moreover, Pn
′

h and Pn,n
′

h are results of one- and two-variable divisions in variables
tn′ and tn, tn′ , while considering other variables as coefficients. These divisions can be deduced
by the multivariable Euclidean division algorithm of Section 3.1 if we replace the partial order
on L⊗Q (defined in Subsection 2.1.3) by the corresponding projections ‘<n′ ’ and ‘<n,n′ ’.
That is, a <n′ b and a <n,n′ b if an′ < bn′ and an < bn, an′ < bn′ , respectively. Since a 6<n′ b
and a 6<n,n′ b both imply a 6< b, the monomial terms of Pn

′

h and Pn,n
′

h can be found among
monomial terms of P+

h . More precisely, by choosing an arbitrary partial order on the nodes of
type {N ,�} with unique minimal node n0 one can write

Pn
′

h (tN ) =
∑
β∈Bh
βn′≥0

pβt
β
N =

∑
β∈Bh

sn′(β)pβt
β
N ,

Pn,n
′

h (tN ) =
∑
β∈Bh

βn or βn′≥0

pβt
β
N =

∑
β∈Bh

(
sn′(β) + sn�n′(β)

)
pβt

β
N if n � n′.

Thus,

Ph(tN ) =
∑
n�n′

Pn,n
′

h (tN )−
∑
n′∈N

(δn′,N − 1)Pn
′

h (tN )

=
∑
n�n′

∑
β∈Bh

(
sn′(β) + sn�n′(β)

)
pβt

β
N −

∑
n′∈N

(δn′,N − 1)
∑
β∈Bh

sn′(β)pβt
β
N

=
∑
β∈Bh

[ ∑
n�n′

(
sn′(β) + sn�n′(β)

)
−
∑
n′∈N

(δn′,N − 1)sn′(β)
]
pβt

β
N

=
∑
β∈Bh

[
sn0(β) +

∑
n�n′

sn�n′(β)
]
pβtN =

∑
β∈Bh

s(β)pβtN ,

since #{n |n � n′} = δn′,N − 1 for n′ 6= n0 and #{n |n � n0} = δn0,N . On the other hand, we
emphasize that the final result does not depend on the chosen partial order {N ,�} as the
multiplicity function s is already independent of it.
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Remark 3.5.

(i) For β < 0 we have s(β) = 0, while for β 6< 0 we have s(β) ≥ 1. Hence, the multiplicity
s(β) is non-zero for every β ∈ Bh, thus every monomial of P+

h appears in Ph.
(ii) Recall that the reduced Poincaré series Zh(tN ) is the Taylor expansion at the origin of

fh(tN ), c.f. Subsection 2.3.1. On the other hand, the ‘endless’ multivariable Euclidean
division (Section 3.1) can be thought as the expansion of fh(tN ) at infinity. The ‘endless’
division (with stopping conditions) results P+

h from which we can recover Ph by the
above theorem. Or, if we take each term of the expansion at infinity with multiplicity s
then we recover Ph, since terms with negative degree in each tn have zero multiplicity.

4. Comparison and examples for P and P+

The aim of this section is to compare the two polynomials Ph(tN ) and P+
h (tN ), given by

the two different decompositions, through crucial classes of negative definite plumbing graphs.
In case of the first class, when the orbifold graph is a bamboo, we will prove that the two

polynomials agree. The second class is also motivated by singularity theory and contains the
graphs of the manifolds S3

−p/q(K) where K ⊂ S3 is the connected sum of algebraic knots.
Although this class gives examples when the two polynomials do not agree, their structure can
be understood using some specialty of these manifolds.

4.1. The orbifold graph is a bamboo

Let Γ be a negative definite plumbing graph with set of nodes N = {n1, . . . , nk}. In this
section we will assume that its orbifold graph Γorb is a bamboo, i.e. Γorb has no nodes.

n1 n2 nk−1 nk

. . .

Then we have the following result:

Theorem 4.1. If the orbifold graph Γorb is a bamboo then Ph(tN ) = P+
h (tN ) for any

h ∈ H, i.e. every monomial term of P+
h (tN ) appears in Ph(tN ) with multiplicity 1.

Denote by vi := πN (E∗ni) the projected vectors for all i = 1, . . . , k. Similarly as in the proof
of Lemma 3.1, we use the result of [14, Theorem 5.0.1] concluding that in the case when Γorb is

a bamboo we can write fh(tN ) as linear combination of fractions of form
tαN

(1− tλ1v1

N )(1− tλkvkN )
for some α ∈ R≥0〈vi〉i=1,k ∩ Z〈πN (E∗v )〉v∈V and λ1, λk > 0. (In fact, a consequence of [14] is
that the h-equivariant parts fh as rational functions have the same ‘shape’ as f , c.f. Formula
(1.1), in their denominators consisting factors corresponding to nodes which are ends in Γorb.)

By the uniqueness of the decomposition (3.2) and Theorem 3.4 it is enough to prove the
following proposition.

Proposition 4.2. Let α ∈ R≥0〈vi〉i=1,k ∩ Z〈πN (E∗v )〉v∈V and consider the following frac-

tion ϕ(tN ) =
tαN

(1− tλ1v1

N )(1− tλkvkN )
, λ1, λk > 0. Then for any monomial tβN of the quotient

ϕ+ given by the decomposition ϕ = ϕ+ + ϕneg of Lemma 3.1 one has s(β) = 1.

The main tool in the proof of the proposition will be the following lemma.
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Lemma 4.3. Under the assumption of the above proposition, for any β =
∑k
`=1 β`En` ∈

α− R≥0〈v1, vk〉 with not all β` negative we have

β1, . . . , βi−1 < 0 ≤ βi, . . . , βj ≥ 0 > βj+1, . . . , βk

for some i, j ∈ {1, . . . , k}.

We denote by Ei = Ei(α) the intersection {γ =
∑k
`=1 γ`En` | γi = 0} ∩ (α− R≥0〈v1, vk〉).

Then for any fixed β satisfying the conditions of the lemma, we consider the parametric line
β(t) = tβ + (1− t)α, t ∈ R connecting α to β, and denote by βi(t) the coordinates of β(t).
Whenever β(t) crosses Ei as t goes from 0 to 1 the sign of βi(t) changes from positive to
negative. Thus, the order in which β(t) crosses Ei determines the order in which βi(t)’s change
sign, consequently determines the sign configuration of βi = βi(1), i = 1, . . . , k.

Lemma 4.4. Let σi = σi(α) and τi = τi(α) be such that α− σiv1 = (α− R≥0v1) ∩ Ei and
α− τivk = (α− R≥0vk) ∩ Ei for any i = 1, . . . , k. If α = a`v`, a` > 0 for some ` ∈ {1, . . . , k}
then we have

0 < σ1(α) < . . . < σ`(α) = . . . = σk(α) and τ1(α) = . . . = τ`(α) > . . . > τk(α) > 0.

Moreover, for general α ∈ R≥0〈vi〉i=1,k one has σ1(α) ≤ . . . ≤ σk(α) and τ1(α) ≥ . . . ≥ τk(α).

Proof. Note that we have additivity τi(α
′ + α′′) = τi(α

′) + τi(α
′′) and σi(α

′ + α′′) =
σi(α

′) + σi(α
′′), hence we may assume that α = a`v`. Moreover, we will only prove the lemma

for σi’s. The intersection point α− σiv1 is characterized by (α− σiv1, E
∗
ni) = 0, whence

σi = σi(a`v`) =
(a`v`, E

∗
ni)

(v1, E∗ni)
= a`

(E∗n` , E
∗
ni)

(E∗n1
, E∗ni)

> 0.

Therefore, it is enough to show that

(E∗n` , E
∗
ni)

(E∗n1
, E∗ni)

<
(E∗n` , E

∗
ni+1

)

(E∗n1
, E∗ni+1

)
, ∀ i < ` and

(E∗n` , E
∗
ni)

(E∗n1
, E∗ni)

=
(E∗n` , E

∗
ni+1

)

(E∗n1
, E∗ni+1

)
, ∀ i ≥ `. (4.1)

Recall that by (2.1) (E∗v , E
∗
w) = −

detΓ\[v,w]

detΓ
for any vertices v, w, hence (4.1) is equivalent to

the following determinantal relations

detΓ\[n1,ni] detΓ\[ni+1,n`]−detΓ\[n1,ni+1] ·detΓ\[ni,n`] > 0, ∀ i < `, (4.2)

and equality for i ≥ `.
We use the technique of N. Duchon (cf. [9, Section 21]) to reduce (4.2) to the case when

Γ is a bamboo. To do so, we can remove peripheral edges of a graph in order to simplify
graph determinant computations. Removal of such an edge is compensated by adjusting the
decorations of the graph. Let v be a vertex with decoration bv and which is connected by an
edge only to a vertex w with decoration bw. If we remove this edge and replace the decoration of
the vertex w by bw − b−1

v then the resulting non-connected graph will be also negative definite
and its determinant does not change. Using this technique we remove consecutively every edge
on the legs of Γ, and denote the resulting decorated graph by Γ′ which consists of a bamboo
– connecting the nodes n1 and nk – and isolated vertices. Note that detΓ\[ni,nj ] = detΓ′\[ni,nj ]
for all i, j = 1, . . . , k. Moreover, (4.2) is equivalent with

detΓ′\[n1,ni] detΓ′\[ni+1,n`]−detΓ′\[n1,ni+1] ·detΓ′\[ni,n`] > 0, ∀ i < `, (4.3)

and equality for i ≥ `, respectively. From point of view of (4.3) we can forget about the isolated
vertices of Γ′, i.e. we may assume that Γ′ is a bamboo. If we denote by det′[ni,nj ] the determinant
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of the graph [ni, nj ] as subgraph of (the bamboo) Γ′ then for i < ` we have

detΓ′\[n1,ni] detΓ′\[ni+1,n`]−detΓ′\[n1,ni+1] ·detΓ′\[ni,n`] =

det′[n1,ni+1) ·det′(ni,nk] ·det′(n`,nk]−det′[n1,ni) ·det′(ni+1,nk] ·det′(n`,nk]

= det′[n1,nk] ·det′(ni,ni+1) ·det′(n`,nk],

where the second equality uses the identity

det′[n1,ni+1) ·det′(ni,nk] = det′[n1,nk] ·det′(ni,ni+1) + det′[n1,ni) ·det′(ni+1,nk]

from [14, Lemma 2.1.2]. Moreover, det′[n1,nk] ·det′(ni,ni+1) ·det′(n`,nk] > 0 since any subgraph
of the nondegenerate negative definite graph Γ′ is nondegenerate negative definite, i.e. with
strictly positive determinant. Therefore, all three factors of the product are positive themselves
(note that det′(nk,nk] = 1). If i ≥ ` then it is easy to see

detΓ′\[n1,ni] detΓ′\[ni+1,n`]−detΓ′\[n1,ni+1] ·detΓ′\[ni,n`] =

det′(ni,nk] ·det′[n1,n`)
·det′(ni+1,nk]−det′(ni+1,nk] ·det′[n1,n`)

·det′(ni,nk] = 0.

We also introduce additional notations E0 = E0(α) = α− R≥0vk and Ek+1 = Ek+1(α) = α−
R≥0v1. Moreover, denote by εi,j = εi,j(α) = Ei(α) ∩ Ej(α) the intersection points of segments
Ei and Ej .

Lemma 4.5. For any i = 0, . . . , k + 1 and α ∈ R≥0〈v`〉`=1,k, on Ei(α) the intersection points
are in the following order: εi,0(α), . . ., εi,i−1(α), εi,i+1(α), . . ., εi,k+1(α).

Proof. For i = 0 and i = k + 1 the statement is immediate from Lemma 4.4. Notice that
we have defined σi = σi(α) and τi = τi(α) such that εi,0 = α− τivk and εi,k+1 = α− σiv1. If
ti,j = ti,j(α) ∈ [0, 1] such that εi,j = (1− ti,j)εi,0 + ti,jεi,k+1, then we have to prove that (†)
ti,j(α) ≤ ti,j+1(α) for all j.

The case α = a`v`, a` > 0 for some ` ∈ {1, . . . , k} follows directly from the first part of
Lemma 4.4, resulting (‡) ti,j(a`v`) ≤ ti,j+1(a`v`) for all j. For general α =

∑k
`=1 a`v` one has

the additivity εi,j(α
′ + α′′) = εi,j(α

′) + εi,j(α
′′) (as vectors), hence by definition we get

ti,j(α
′ + α′′) =

ti,j(α
′)σi(α

′) + ti,j(α
′′)σi(α

′′)

σi(α′) + σi(α′′)
, (4.4)

which implies the inequalities (†) using the special cases (‡) for any `.

Lemma 4.6. The bounded region (α− R≥0〈v1, vk〉) \ R<0〈En〉n∈N is the union of quad-
rangles between segments Ei, Ei+1, Ej , Ej+1 or triangles (degenerated cases). These polygons
may intersect each other only at the boundary.

Proof. The segments Ei divide (α− R≥0〈v1, vk〉) \ R<0〈En〉n∈N into convex polygons. By
Lemma 4.5, we can assume that [εi,j , εi,j+1] and [εi+1,j , εi,j ] are two faces at vertex εi,j of
such a polygon. Moreover, εi+1,j and εi,j+1 must be also vertices of the polygon and another
two faces must lie on segments Ei+1 and Ej+1. Hence, the segments Ei, Ej , Ei+1, Ej+1 form a
convex polygon with vertices εi,j , εi+1,j , εi,j+1 and εi+1,j+1. The polygon can degenerate into
triangles with vertices εi,j , εi,j+1 and εi+1,j+1, see e.g. Figure 1.
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E0

Ek+1

ε0,k+1 = α

ε0,1

εk,k+1

ε0,2

εk−1,k+1

ε0,k

ε1,k+1

ε0,k−1

ε2,k+1

ε1,k

ε1,k−1

ε1,2

ε2,k

εk−1,k

ε2,k−1

β

β(t)

Figure 1. The intersection points εi,j and parametric line β(t)

Proof of Lemma 4.3. Let β ∈ (α− R≥0〈v1, vk〉) \ R<0〈En〉n∈N be fixed. Consider the
parametric line β(t) = tβ + (1− t)α connecting β to the vertex α of the affine cone, c.f. Figure
1. The order in which β(t) intersects the segments Ei as t goes from 0 to 1 tells us the order in
which the coordinates βi(t) of β(t) are changing signs.

In the beginning, every βi(t) > 0 and β(t) sits in the polygon with vertices α = ε0,k+1, ε0,k,
ε1,k, εk+1,1, with sides lying on E0, Ek+1, E1, Ek. We also say that we have already intersected E0
and Ek+1. Then β(t) either intersects E1, hence β1(t) changes to β1(t) < 0 and β(t) arrives into
the polygon ε1,k+1, ε1,k, ε2,k, ε2,k+1 with sides on E1, E2, Ek, Ek+1, or, it intersects Ek implying
that βk(t) becomes negative and β(t) arrives into the polygon with sides on E0, E1, Ek−1, Ek.
Therefore, we have crossed E0, E1, Ek+1 in the first, while E0, Ek, Ek+1 in the second case.

By induction, we assume that β(t) lies in the polygon with sides Ei, Ei+1, Ej , Ej+1 for some t
and it has already crossed E0, . . . , Ei, Ej+1, . . . , Ek+1, that is β1(t), . . . , βi(t), βj+1(t), . . . , βk(t) <
0 and βi+1(t), . . . , βj(t) ≥ 0. Thus, β(t) must intersect Ei+1 or Ej . Therefore, either βi+1(t)
changes sign to βi+1(t) < 0 and β(t) arrives into the polygon with sides Ei+1, Ei+2, Ej , Ej+1, or
βj(t) changes to βj(t) < 0 and β(t) arrives into the polygon with Ei, Ei+1, Ej , Ej−1. Hence, the
induction stops after arriving to β and proves the desired configuration of signs.

Proof of Proposition 4.2. If pβt
β
N is a monomial term of ϕ+(tN ) then β ∈ α− R≥0〈v1, vk〉,

moreover not all β` are negative and so we have sign configuration as in Lemma 4.3. To
compute the multiplicity s(β) we choose the ordering of nodes n` � n`+1 for all ` = 1, . . . , k − 1.
If βk ≥ 0 then snk(β) = 1 and sn`�n`+1

(β) = 0 for all ` = 1, . . . , k − 1, thus s(β) = snk(β) +∑k−1
`=1 sn`�n`+1

(β) = 1. If βk < 0 then snk(β) = 0 and sn`�n`+1
(β) = 0 for all ` except for ` = j,

for which βj ≥ 0 and βj+1 < 0, thus s(β) = 1 in this case too.

4.2. An example with higher multiplicities

Consider the following negative definite plumbing graph Γ given by the left hand side
of Figure 2. The associated plumbed 3-manifold is obtained by (−7/2)-surgery along the
connected sum of three right handed trefoil knots in S3. Its group H ' Z7 is cyclic of order
7, generated by the class [E∗+1], where E∗+1, E∗i and E∗ij are the dual base elements in L′

associated with the corresponding vertices shown by Figure 2. For simplicity, we set l̄ := πN (l)
for l ∈ L⊗Q and use short notation (l+, l1, l2, l3) for l = l+E+ +

∑3
i=1 liEi.

By applying the Euclidean division algorithm from Section 3.1 to the full f(t) as defined
in (1.1), it turns out that every exponent β = (β+, β1, β2, β3) appearing in P+(tN ) can be
written in the form β = c+Ē

∗
+ +

∑3
i=1 ciĒ

∗
i −

∑3
i=1

∑2
j=1 xijĒ

∗
ij − x+1Ē

∗
+1 for some 0 ≤ c+ ≤

2, 0 ≤ ci ≤ 1 and xij , x+1 ≥ 1. E.g, for the choice c+ = 2, ci = 1, x+1 = xij = 1 for i ∈ {1, 2}
and x3j = 2 we get β0 = (−1/7, 1/7, 1/7,−34/7). Moreover, one can check that this is the only
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E+

E1

E+1E2

E3

E11

E12

E21

E22

E31

E32

−3

−2

−3

−2

−3

−2

−22 −2

−1

−1

−1

Γ : −

+

+

−

Figure 2. The graph Γ and the chosen partial ordering on the nodes

way to write β0 in the above form. Therefore, the orientation (or partial order) given by the
right hand side of Figure 2 implies that s(β0) = 2. In fact, β0 belongs to P+

6 (tN ), where we
use h ∈ Z7 = {0, 1, . . . , 6} as a number to index P+

h . Hence, by Theorem 3.4

P6(tN ) 6= P+
6 (tN ).

We also emphasize that the exponents
(−1/7, 1/7, 1/7,−34/7), (−1/7, 1/7,−34/7, 1/7), (−1/7,−34/7, 1/7, 1/7) with coefficient
pβ = 1 and
(−1/7, 1/7, 1/7,−27/7), (−1/7, 1/7,−27/7, 1/7), (−1/7,−27/7, 1/7, 1/7) with coefficient
pβ = −1

(all of them present in P+
6 (tN )) are the only exponents with s(β) = 2 > 1. Hence, although the

two polynomials may be different, it still holds that Ph(1) = P+
h (1) = swnormh for any h ∈ Z7.

4.3. On the 3-manifold S3
−p/q(K)

4.3.1. Algebraic knots Assume K ⊂ S3 is an algebraic knot, i.e. it is the link of an
irreducible plane curve singularity defined by the function germ f : (C2, 0)→ (C, 0).

The Newton pairs of K are the pairs of integers {(pi, qi)}ri=1, where pi ≥ 2, qi ≥ 1, q1 >
p1 and gcd(pi, qi) = 1. They are the exponents appearing naturally in the normal form of f.
From topological point of view, it is more convenient to use the linking pairs (pi, ai)

r
i=1 (the

decorations of the splice diagram, cf. [9]), which can be calculated recursively by

a1 = q1 and ai+1 = qi+1 + aipipi+1 for i ≥ 1. (4.5)

The set of intersection multiplicities of f with all possible analytic germs is a numerical
semigroup denoted byMf. Although its definition is analytic,Mf is described combinatorially
by its Hilbert basis: p1p2 · · · pr, aipi+1 · · · pr for 1 ≤ i ≤ r − 1, and ar. In fact, |Z≥0 \Mf| =
µf/2 (cf. [17]), where µf is the Milnor number of f. The Frobenius number of Mf is µf − 1,
and for ` ≤ µf − 1 one has the symmetry:

` ∈Mf if and only if µf − 1− ` 6∈ Mf. (4.6)

We emphasize that the integer δf := µf/2 is called the delta-invariant of f, which equals the
minimal Seifert genus of the knot K.

The Alexander polynomial ∆(t) of K (normalized by ∆(1) = 1) can be calculated in terms
of the linking pairs via the formula

∆(t) =
(1− ta1p1p2···pr )(1− ta2p2···pr ) · · · (1− tarpr )(1− t)

(1− ta1p2···pr )(1− ta2p3···pr ) · · · (1− tar )(1− tp1···pr )
. (4.7)
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It has degree µf. On the other hand, ∆(t)/(1− t) =
∑
`∈Mf

t` is the monodromy zeta-function

of f (cf. [5]), whose polynomial part can be given in terms of gaps of the semigroup: Pf(t) =
−
∑
`/∈Mf

t` (cf. [14, Subsection 7.1.2]). Hence, the degree of Pf(t) equals µf − 1.

The embedded minimal good resolution graph of f (or the minimal negative-definite plumbing
graph of K) has the shape of

v1 vr

−1

KΓf :

where the arrowhead, attached to the unique (−1)-vertex, represents the knot K. Its
decorations can be calculated from the Newton pairs {(pi, qi)}i using e.g. [9], see also [18,
Section 4.I]. The graph has an additional multiplicity decoration: the multiplicity of a vertex
is the coefficient of the pullback-divisor of f along the corresponding exceptional divisor, while
the arrowhead has the multiplicity decoration 1. E.g., we set mf := arpr to be the multiplicity
of the (−1)–vertex.

Notice that the isotopy type of K ⊂ S3 is completely characterized by any of the invariants
highlighted above. For general references see [2], [9] and also the presentation of [18] and [25].

4.3.2. The plumbing of S3
−p/q(K) Let p/q > 0 (p > 0, gcd(p, q) = 1) be a positive

rational number and {Kj}νj=1 be a collection of algebraic knots. Then we consider the
oriented 3-manifold M = S3

−p/q(K), obtained by (−p/q)-surgery along the connected sum

K = K1# · · ·#Kν ⊂ S3 of the knots Kj . All the invariants associated with Kj , listed in
the previous section, will be indexed by j. E.g., the linking pairs of Kj will be denoted by

(p
(j)
i , a

(j)
i )

rj
i=1, the Alexander polynomial by ∆(j)(t) and m(j) stands for the multiplicity of the

(−1)-vertex in the minimal plumbing graph of Kj as above. Set also m :=
∑ν
j=1m

(j).

The schematic picture of the plumbing graph Γ of the oriented 3–manifoldM = S3
−p/q(K) has

the form as shown in Figure 3 (see [4]), where the dash-lines represent strings of vertices. The

Γ(1)

Γ(j)

Γ(ν)

v
(j)
1

v
(j)
i

v
(j)
rj

−1

−1

−1

v+ v+1 v+s

−k0 −m −k1 −ks

Γ :

a
(j)
i

D
(j)
i

p
(j)
i

Γ
(j)
i

Figure 3. Plumbing graph of S3
−p/q(K)

integers k0 ≥ 1 and ki ≥ 2 (1 ≤ i ≤ s), in the decorations of the vertices v+i, are determined
by the Hirzebruch/negative continued fraction expansion

p/q = [k0, . . . , ks] = k0 − 1/(k1 − 1/(· · · − 1/ks) · · · ).

We write E+, E+i and E
(j)
i for the base elements corresponding to the vertices v+, v+i and

v
(j)
i , respectively.
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It is also known that the homology group H = L′/L ' Zp is the cyclic group of order p,
generated by [E∗+s] (for a complete proof see [4, Lemma 6]).

In Figure 3 we have put at the node v
(j)
i its splice diagram decorations a

(j)
i , p

(j)
i and D

(j)
i

defined in [9], i.e. the determinants of the respective connected subgraphs we get by deleting

v
(j)
i and its adjacent edges from Γ. For simplicity, we use notation Γ

(j)
i for the subgraph spanned

by the nodes {v(j)
i′ }ii′=1 and their corresponding end-vertices (inside the dashed rectangle in

Figure 3). Hence, by definition one can write D
(j)
i = det(Γ \ Γ

(j)
i ). Also, set Γ(j) := Γ

(j)
rj and its

self-intersection decorations are the same as of the embedded minimal good resolution graph
of Kj , we omit the decorations from the picture for simplicity.

In the next lemma we prove some useful formulas.

Lemma 4.7.

(i) D
(j)
i = p+ a

(j)
i p

(j)
i

(
p

(j)
i+1 · · · p

(j)
rj

)2

q, for 1 ≤ i ≤ rj ;
(ii) a

(j)
i+1D

(j)
i = q

(j)
i+1p+ a

(j)
i p

(j)
i p

(j)
i+1D

(j)
i+1, for 1 ≤ i ≤ rj − 1.

Proof. Let K ′j be the knot with Newton pairs (p
(j)
i′ , q

(j)
i′ )

rj
i′=i+1. The graph Γ \ Γ

(j)
i is the

plumbing graph of the manifold S3
−p′/q(K

′
j# #j′ 6=jKj′) for some p′ which can be computed

as follows. The new linking pairs (p
(j)
i′ , ã

(j)
i′ )

rj
i′=i+1 can be calculated recursively using (4.5) and

ã
(j)
i+1 = q

(j)
i+1. Hence, we find the identity

ã(j)
rj = a(j)

rj − a
(j)
i p

(j)
i

(
p

(j)
i+1 · · · p

(j)
rj−1

)2

p(j)
rj ,

which implies that the multiplicity m̃(j) of the (−1)-vertex in the embedded graph of K ′j equals

ã
(j)
rj p

(j)
rj = m(j) − a(j)

i p
(j)
i

(
p

(j)
i+1 · · · p

(j)
rj

)2

. Since the decoration on v+ remains unchanged we

must have for the Hirzebruch/negative continued fraction

p′/q =
[
k0 + a

(j)
i p

(j)
i

(
p

(j)
i+1 · · · p

(j)
rj

)2

, k1, . . . , ks
]

= p/q + a
(j)
i p

(j)
i

(
p

(j)
i+1 · · · p

(j)
rj

)2

.

Finally, note that p′ = D
(j)
i is the determinant of the graph Γ \ Γ

(j)
i [4, Lemma 6]. This

concludes the formula of (i) . The recursive identity of (ii) can be easily verified using (i).

4.3.3. Seiberg–Witten invariant via Alexander polynomials We consider the product of
the Alexander polynomials ∆(t) :=

∏
j ∆(j)(t) with degree µ :=

∑
j µ

(j). By the known facts
∆(1) = 1 and ∆′(1) = µ/2, we get a unique decomposition

∆(t) = 1 + (µ/2)(t− 1) + (t− 1)2 · Q(t)

for some polynomial with integral coefficients Q(t) =
∑µ−2
i=0 qit

i of degree µ− 2.
We remark that the coefficients of Q has many interesting arithmetical properties. E.g.,

notice that q0 = µ/2, qµ−2 = 1 and qµ−2−i = qi + i+ 1− µ/2 for 0 ≤ i ≤ µ− 2, given by the
symmetry of ∆. The explicit calculation of a general coefficient is rather hard, one can expect it
to be connected with some counting function in a semigroup/affine monoid structure associated
with the manifold M (cf. [14]). In particular, if ν = 1 one can check that qi = #{n 6∈ M : n >
i}, where M is the semigroup of the unique algebraic knot K. More details and discussions
about these coefficients can be found e.g. in [3].

We look at the decomposition Q(t) =
∑
h∈Zp Qh(t) where Qh(t) :=

∑
i≥0 q[(ip+h)/q]t

[ ip+h
q ]

and consider the following normalization (different from Formula (2.2)) of the Seiberg–Witten
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invariants:

s̃w
norm
h (M) := −sw−[hE∗+s]∗σcan(M)− ((K + 2hE∗+s)

2 + V)/8 for 0 ≤ h < p. (4.8)

Then the following identity is known by [1, 20, 25]:

Qh(1) = s̃w
norm
h (M). (4.9)

4.3.4. On the structure of the polynomial part For any h ∈ Zp consider the decomposition

fh(tN ) = P+
h (tN ) + fnegh (tN ),

given by Lemma 3.1, i.e. fnegh (tN ) has negative degree in each variable and write P+
h (tN ) =∑

β∈Bh pβt
β
N where β = (βv)v∈N and β ≮ 0. Let β+ be the E+-coefficient of β and set B :=⋃

h Bh too. For any polynomial P(tN ) we consider the decomposition Pβ+≥0(tN ) + Pβ+<0(tN )
so that the first part consists of those monomial terms for which β+ ≥ 0, and similarly, all the
terms of the second part have β+ < 0.

By definitions we have P+
h,β+≥0(tN ) = P

v+

h (tN ), where P
v+

h is the result of a single variable
division, see Subsection 2.4.2. Moreover, recall that Theorem 3.4 concludes that the monomial
terms of Ph(tN ) are exactly of P+

h (tN ) with multiplicities. Therefore, in general, the difference
polynomial Dh(tN ) := Ph(tN )− P v+

h (tN ) consists of Ph,β+<0(tN ) and the higher multiplicity
terms (s(β) ≥ 2) from Ph,β+≥0(tN ).

However, in the next theorem we show that there are no monomial terms in Ph,β+≥0(tN )
with s(β) ≥ 2, i.e. Dh(tN ) = Ph,β+<0(tN ).

Theorem 4.8.

Ph,β+≥0(tN ) = P+
h,β+≥0(tN ) = P

v+

h (tN ).

Proof. First of all we may assume that ν ≥ 2 otherwise we have the situation of Section 4.1.
We fix the orientation of Γorb towards to the node v+ and consider its induced partial order
(N ,�) (see Section 3.2). For any β ∈ B for which β+ ≥ 0 one has sv+

(β) = 1, thus by Theorem
3.4 we have to prove that for such a β we have s

v
(j)
i �v

(j)
i+1

(β) = 0 for any j ∈ {1, . . . , ν} and

i ∈ {1, . . . , rj}. We set v
(j)
rj+1 := v+. In order to see this, we prove that the sign configuration

on the subgraphs Γ(j) behaves similarly as in Lemma 4.3. Thus, assuming β+ ≥ 0, for any j
we show that

β
(j)
1 , . . . , β

(j)
i−1 < 0 ≤ β(j)

i , . . . , β(j)
rj , β+ for some i ∈ {1, . . . , rj}. (4.10)

It is enough to show that Proposition 4.2 can be applied to the zeta-function f(tNj ) reduced

to the subset of nodes Nj consisting of v
(j)
i and v+ of Γ.

For a fixed j we construct a new plumbing graph ΓMj
by deleting all the subgraphs Γ(j′)

and its adjacent edges in Γ for any j′ 6= j and modifying the decoration of v+ into −k0 −m(j).
Then the new graph ΓMj

is the plumbing graph of the manifold Mj := S3
−p/q(Kj). Or, if we

look at Γ as the minimal good resolution graph of a normal surface singularity then one can
obtain a new resolution graph by blowing down all the subgraphs Γ(j′). In this resolution, the
new exceptional divisor corresponding to the vertex v+ is a rational curve with singular points
and self-intersection −k0 −m(j). If we disregard the singularities of this divisor then we obtain
a normal surface singularity whose link is Mj and its minimal good resolution is ΓMj

.
We distinguish the invariants of the new graphs in the following way: Lj denotes the lattice

associated with ΓMj
with base elements Ev,j , the dual lattice will be denoted by L′j with base

elements E∗v,j . We identify Nj of Γ with the same set of vertices of ΓMj (notice that v+ has
degree two so it is no longer a node in ΓMj ). Then one can also identify the base elements of
πNj (L) and πNj (Lj). In particular, one can show that πNj (E

∗
+) = πNj (E

∗
+,j).
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Using the above identifications, one can check the following identity

f(tNj ) = fj(tNj )
∏
j′ 6=j

∆(j′)(t
E∗+
Nj ),

by calculating explicitely the zeta-function f(tNj ) and the zeta-function fj(tNj ) associated
with ΓMj

restricted to Nj using the Formula (1.1) and (2.1), and comparing the result with
the Formula (4.7) for Alexander polynomials.

The only problem is that Nj contains v+ which is no longer a node in ΓMj . Nevertheless,
we can blow up the vertex v+ and denote the new graph by Γ′Mj

. Then the newly created
(−1)-vertex is connected to v+ (if q = 1 then we can create two such (−1)-vertices), hence
v+ becomes a node of Γ′Mj

. Using the natural identifications we have πNj (E
∗
+,j) = πNj (E

∗
b,j)

where E∗b,j denotes the newly created dual base element. Moreover, one has fj(tNj ) = f ′j(tNj ),
where f ′j is associated with Γ′Mj

.

Finally, the rational function f ′j(tNj )
∏
j′ 6=j ∆(j′)(t

E∗+
Nj ) is the sum of rational fractions as in

Proposition 4.2 which implies the sign configuration (4.10) by Lemma 4.3.

We notice that for the difference polynomial Dh(tN ) := Ph(tN )− P v+

h (tN ) one has

Dh(1) = swnormh (M)− s̃w
norm
h (M) = χ(r[hE∗+s]

)− χ(hE∗+s),

where χ(l′) := −(K + l′, l′)/2 for any l′ ∈ L′. This follows from (2.7), (4.9) and the fact that
P
v+

h (t) = Qh(t), which is proven in [1, 8.1]. Thus, Theorem 4.8 implies that Ph,β+<0 counts only
the difference between the normalizations and the Seiberg–Witten information is contained in
P+
h,β+≥0.

4.3.5. Canonical case h = 0 From geometric point of view we are mainly interested in the
case when h = 0, since f0(tN ) is related with analytic Poincaré series associated with a normal
surface singularity whose link is M (c.f. Section 2.3, e.g. in the case when q = 1 the manifold
M = S3

−p(K) may appear as the link of a superisolated singularity).
In this case one has D0(1) = P0,β+<0(1) = 0, although it is not clear whether there are some

monomial terms appearing in P0,β+<0. This can indeed occur for h 6= 0 as shown by the example
from Section 4.2. However, in the sequel we prove that for h = 0 this is not the case, i.e.

P+
0,β+<0(tN ) = P0,β+<0(tN ) ≡ 0.

Thus, we have P0(tN ) = P+
0 (tN ), in particular P+

0 (1) = swnorm0 (M).

Lemma 4.9. Let f
(j)
i be the irreducible plane curve singularity with Newton pairs

(p
(j)
i′ , q

(j)
i′ )ii′=1 for any 1 ≤ j ≤ ν and 1 ≤ i ≤ rj and its associated semigroup will be denoted

by M
f
(j)
i

. Then for any exponent β = (β+,
{
β

(j)
i

}
j=1,ν;i=1,rj

) ∈ B of the monomial terms in

P+(tN ) we have the following relations

(i)

a
(j)
i+1β

(j)
i = a

(j)
i p

(j)
i β

(j)
i+1 + q

(j)
i+1`

β

f
(j)
i

,

where `β
f
(j)
i

∈ Z \M
f
(j)
i

depending on β. In particular, for i = rj we set a
(j)
rj+1 := 1,

q
(j)
rj+1 := 1 and β

(j)
rj+1 := β+, hence the identity becomes β

(j)
rj = m(j)β+ + `β

f(j)
.

(ii)

β
(j)
i < a

(j)
i p

(j)
i · · · p

(j)
rj (β+ + 1).
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Proof. (i) By Formula (1.1) the zeta-function for our special plumbing graph Γ (c.f. Figure

3) has the form f(tN ) =
(
1− t

E∗+
N
)ν−1 ·

∏
j,i

(
1− t

E
(j)∗
i

N
)/(

1− t
E∗+s
N
)
·
∏
j

∏
v∈E(j)

(
1− t

E(j)∗
v

N
)
,

where we use notation E(j) for the set of end-vertices of Γ(j) and E
(j)∗
v are the dual base

elements associated with them. Hence, applying the division algorithm of Section 3.1 for f(tN )
we can write the exponents of the quotient polynomial P+(tN ) in the following form

β = k+E
∗
+ +

∑
j

(
∑
i

k
(j)
i E

(j)∗
i −

∑
v∈E(j)

x(j)
v E(j)∗

v )− x+E
∗
+s (4.11)

for some integers 0 ≤ k+ ≤ ν − 1, k
(j)
i ∈ {0, 1}, x

(j)
v ≥ 1 and x+ ≥ 1.

For any subgraph Γ′ of Γ let us denote by βΓ′ the partial sum considering only those terms
from the right hand side of (4.11) which are associated with the nodes and end-vertices of Γ′.

Recall that in Subsection 4.3.2 we have defined Γ
(j)
i as the subgraph spanned by the nodes

{v(j)
i′ }ii′=1 and their corresponding end-vertices. Then, we claim that

a
(j)
i+1β

(j)
i = a

(j)
i+1 · (β,−E

(j)∗
i ) = a

(j)
i p

(j)
i β

(j)
i+1 +

( a(j)
i+1D

(j)
i

p
(j)
i+1D

(j)
i+1

− a(j)
i p

(j)
i

)
· βΓ

(j)
i

i+1 , (4.12)

where β
Γ

(j)
i

i+1 := (βΓ
(j)
i ,−E(j)∗

i+1 ) is the E
(j)
i+1-component of βΓ

(j)
i (c.f. Section 1.1). Indeed, the

first equality uses the fact that β
(j)
i is the E

(j)
i -component of β, hence it can be calculated by

the intersection (β,−E(j)∗
i ). For the second equality we have applied to (4.11) the following

identities coming from Formula 2.1: for any node or an end-vertex v of Γ one has that

a
(j)
i+1(E∗v , E

(j)∗
i ) equals to

a
(j)
i+1D

(j)
i

p
(j)
i+1D

(j)
i+1

(E∗v , E
(j)∗
i+1 ) in the case when v belongs to Γ

(j)
i , and equals to

a
(j)
i p

(j)
i (E∗v , E

(j)∗
i+1 ) otherwise. (Notice that for the case i = rj we have to set p

(j)
i+1 = 1 too.) On

the other hand, one can check from (4.11) that

β
Γ

(j)
i

i+1 =
p

(j)
i+1D

(j)
i+1

p

( i∑
i′=1

(
k

(j)
i′ · a

(j)
i′ p

(j)
i′ . . . p

(j)
i − x

(j)
ui′
· a(j)
i′ p

(j)
i′+1 . . . p

(j)
i

)
− x(j)

u0
· p(j)

1 . . . p
(j)
i

)
,

(4.13)

where ui′ = u
(j)
i′ is the end-vertex connecting to v

(j)
i′ with the leg of determinant p

(j)
i′ and

u0 = u
(j)
0 is the end-vertex connecting v

(j)
1 with the leg of determinant a

(j)
1 , see Figure 3.

Now, the idea is that by (4.13) and (4.7) the quantity `β
f
(j)
i

:= pβ
Γ

(j)
i

i+1 /(p
(j)
i+1D

(j)
i+1) can be

viewed as an exponent coming from the division of the monodromy zeta-function of f
(j)
i . Hence,

it is either negative or it is an exponent of the polynomial part of the monodromy zeta-function
which implies `β

f
(j)
i

/∈M
f
(j)
i

by [14, Section 7.1.2]. Therefore (4.12) transforms into

a
(j)
i+1β

(j)
i = a

(j)
i p

(j)
i β

(j)
i+1 +

a
(j)
i+1D

(j)
i − a

(j)
i p

(j)
i p

(j)
i+1D

(j)
i+1

p
`β
f
(j)
i

= a
(j)
i p

(j)
i β

(j)
i+1 + q

(j)
i+1`

β

f
(j)
i

,

where the second equality uses Lemma 4.7(ii).
(ii) According to the proof of part (i) and symmetry of M

f
(j)
i

(4.6) we can write

`β
f
(j)
i

= µ
f
(j)
i
− 1− s

f
(j)
i

for some s
f
(j)
i
∈M

f
(j)
i

. Therefore (i) implies β
(j)
i ≤ (a

(j)
i p

(j)
i /a

(j)
i+1)β

(j)
i+1 +

(q
(j)
i+1/a

(j)
i+1)(µ

f
(j)
i
− 1). Then applying this inequality recursively for all β

(j)
i+1, . . . , β

(j)
rj one finds

the following inequality

β
(j)
i ≤ a

(j)
i p

(j)
i · · · p

(j)
rj β+ +

q
(j)
i+1

a
(j)
i+1

(µ
f
(j)
i
− 1) +

rj∑
i′=i+1

a
(j)
i p

(j)
i · · · p

(j)
i′−1q

(j)
i′+1

a
(j)
i′ a

(j)
i′+1

(µ
f
(j)

i′
− 1). (4.14)
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Then we use relations (4.5) for all q
(j)
i′+1, i′ ∈ {i, . . . , rj − 1} (recall that q

(j)
rj+1 := 1) to get

β
(j)
i ≤ a

(j)
i p

(j)
i · · · p

(j)
rj β+ + (µ

f
(j)
i
− 1) +

rj∑
i′=i+1

(
a

(j)
i p

(j)
i · · · p

(j)
i′−1

a
(j)
i′

(µ
f
(j)

i′
− 1)

−
a

(j)
i p

(j)
i · · · p

(j)
i′

a
(j)
i′

(µ
f
(j)

i′−1

− 1)

)
. (4.15)

We use a well-known recursive formula µ
f
(j)

i′
= (a

(j)
i′ − 1)(p

(j)
i′ − 1) + p

(j)
i′ µf

(j)

i′−1

(see e.g. [18,

(4.13)]) for the Milnor numbers of f
(j)
i′ , which can be rewritten for our purpose in the form

a
(j)
i p

(j)
i · · · p

(j)
i′−1

a
(j)
i′

(µ
f
(j)

i′
− 1)−

a
(j)
i p

(j)
i · · · p

(j)
i′

a
(j)
i′

(µ
f
(j)

i′−1

− 1) = a
(j)
i p

(j)
i · · · p

(j)
i′ − a

(j)
i p

(j)
i · · · p

(j)
i′−1.

Finally, this recursion can be applied repeatedly to (4.15) in order to deduce

β
(j)
i ≤ a

(j)
i p

(j)
i · · · p

(j)
rj β+ +

rj∑
i′=i+1

(a
(j)
i p

(j)
i · · · p

(j)
i′ − a

(j)
i p

(j)
i · · · p

(j)
i′−1) + µ

f
(j)
i
− 1

< a
(j)
i p

(j)
i · · · p

(j)
rj (β+ + 1),

where the second (strict) inequality uses [18, Theorem 4.12(a)], saying that m
f
(j)
i
− µ

f
(j)
i

+ 1 ≥
2|V(Γ

(j)
i )| − 1 > 0.

Proposition 4.10. For h = 0 one has P0(tN ) = P+
0 (tN ) = P

v+

0 (tN ).

Proof. By Theorems 3.4 and 4.8 we have to show that P+
0,β+<0(tN ) ≡ 0. Moreover, using

the configuration of signs from the proof of Theorem 4.8, it needs to be proved that β+ < 0

implies β
(j)
i < 0 for any 1 ≤ j ≤ ν and 1 ≤ i ≤ rj . This is implied by part (ii) of Lemma 4.9,

since β+, β
(j)
i ∈ Z in the case h = 0.

4.4. Question about P+

We have shown an example in Section 4.2 in which Ph(tN ) 6= P+
h (tN ) for some h ∈ H. Hence,

by Theorem 3.4 the polynomial part Ph in general can be ‘thicker’ than P+
h . Nevertheless, they

have the same set of exponents for the monomials which object presumably plays an important
role in geometrical applications.

On the other hand, the calculation of P+
h is much more effective, therefore, it is natural to

pose the question whether it can replace Ph as a polynomial part. More precisely, we ask the
following:

Is it true in general that P+
h (1) = swnormh ?
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