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Abstract

In this article we present a computational framework for simulation of tur-
bulent flow in marine based renewable energy applications. In particular, we
focus on floating structures and rotating turbines. This work is an extension
to multiphase turbulent flow, of our existing framework of residual based tur-
bulence modeling for single phase turbulent incompressible flow. We illustrate
the framework in four examples: a regular wave test where we compare against
an exact solution, the standard MARIN wave impact benchmark with experi-
mental validation data, a vertical axis turbine with complex geometry from an
existing turbine, and finally a prototype simulation of decay test in a coupled
moving boundary rigid-body and two-phase fluid simulation.
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1. Introduction

Simulation of structures for marine based renewable energy presents particu-
lar challenges; turbulent flow in water and air, breaking waves, rotating turbines,
fluid-structure interaction, aero- and hydroacoustics. For example, a floating
wind turbine experiences forces from gravity and boyancy, ocean currents and
wind loads, and impact forces from ocean waves. The Reynolds number is high,
and thus the flow is turbulent, and a rotating turbine exhibits rapidly changing
flow separation patterns, including dynamic stall phenomena.
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In this article we focus on the computational fluid dynamics (CFD) aspects
of the problem, and leave the acoustics to future work. Full resolution of all
turbulent scales in a direct numerical simulation (DNS) is not feasible due to
the high computational cost. Instead various methods based on averaging have
been proposed, e.g. a statistical ensemble average (RANS) or a spatial filter
(LES). In these methods the finest turbulent scales of the problem are modeled
in a turbulence model (RANS) or a subgrid model (LES), see e.g. [I] for an
overview of different approaches.

Recently a new type of turbulence model have been developed based on
the residual of the equations in weak form [2 [3], equivalent to stabilized finite
element methods for the Navier-Stokes equations. Residual-based numerical sta-
bilization is consistent, so that an exact solution of the Navier-Stokes equations
satisfies also the stabilized finite element formulation of the equations. Simi-
larly, with a residual-based subgrid model it is possible to directly connect the
finite element approximation to weak solutions of the Navier-Stokes equations,
which provides a mathematical framework for computational approximation of
turbulent flow, in the form of functionals of weak solutions, without introducing
LES filtering or RANS statistical averaging. Combined with duality based a
posteriori estimation of the error in such functionals of weak solutions, adaptive
methods for turbulent flow have been developed under the notions of Adap-
tive DNS/LES, General Galerkin (G2), and Direct Finite Element Simulation
(DFS), see e.g. [2, 4, [B]. The smallest scale in the method is the mesh scale,
which is not determined a priori, but is computed as part of the method.

For high Reynolds number flow, turbulent dissipation from the residual based
turbulence model will dominate the viscous dissipation of the Navier-Stokes
equations. Assuming also the skin friction to be small at solid boundaries we
may use a slip boundary condition to model turbulent boundary layers, which
leads a method which is essentially parameter-free [6].

In the context of marine based renewable energy, we want to treat the wind
and ocean in the same model, including breaking waves and fluid-structure
interaction. To this end we formulate a model based on the variable density
Navier-Stokes equations, where the ocean surface is implicitly represented as a
level curve of the density field. This implicit representation of the ocean surface
allows e.g. for direct simulation of breaking waves. To avoid excessive smearing
of the density field we include a phase separation term in the formulation of the
method.

There is a vast literature on numerical methods for multiphase and variable
density flow, including also finite element methods. Our approach is similar to
a level set approach but without a distance function, as in e.g. [7], but directly
using the density field, similar to [8]. The volume-of-fluid (VOF) method is also
related, where an interface marker is explicitly represented and convected. In [9]
a finite element variational multi-scale (VMS) VOF method is presented, with
a limiting approach for the marker, and a normal reconstruction as part of the
technique for mass-conservation. The novelty of our method is the context of
high Reynolds number turbulent flow with breaking waves, which is straight for-
ward to extend with adaptive algorithms and fluid-structure interaction within



this framework [6,[10]. All methods are implemented in the open source software
FEniCS, targeting the whole range of platforms from standard PCs to massively
parallel supercomputers [11].

As a first step toward full fluid-structure interaction formulation, we here
inclide moving boundaries in the methodology, both with prescribed motion and
rigid-body objects with translational motion, to be able to support “heaving”
motion, standard in marine applications. The moving boundaries are handled
by an Arbitrary Lagrangian-Eulerian (ALE) formulation of the method We will
return to the full fluid-structure interaction problem of flexible structures in
future work, by connecting these methods to our previous work on unified con-
tinuum fluid-structure interaction [12 [10].

Simulation of a rotating turbine is a major computational challenge, still to
be considered as an open problem in all its complexity. But impressive results
have been achieved using stabilized finite element methods, see e.g. [13, [14].
In this article, the rotating turbine blades are modeled by prescribed moving
boundaries with the ALE methodology, where the whole computational domain
in the form of a cylinder is rotated;

The contribution of this article is thus a general framework of computa-
tional methods and open source software implementations, to address a set of
simulation problems of key interest in the marine based renewable energy sec-
tor. In future work we will extend this results to fluid-structure interaction and
aero-/hydroacoustics.

In Section [2| we present the underlying mathematical model, and the finite
element method used to solve the equations. Four computational examples
are presented Section [B} a regular wave test where we compare against an
exact solution, the standard MARIN wave impact benchmark with experimental
validation data, a vertical axis turbine with complex geometry from an existing
turbine, and finally a prototype simulation of decay test in a coupled rigid-body
and two-phase fluid simulation.

This article serves as a companion paper, presenting a detailed description
of the methodology, for our IEA-OES Task 10 paper at EWTEC 2017 [15]
where simulation results for a wave energy becnhmark from several groups are
compiled.

2. Mathematical model

In this section we give the underlying mathematical model we use to simu-
late the ocean-wind system, in the form of the variable density Navier-Stokes
equations, with the two phases represented by two different densities p; and ps
with a diffusive interface in between. We discretise the equations by a stabilized
finite element method, where we use a phase separation term to maintain a thin
diffusive interface over time, which is constructed to conserve the total mass in
time. No explicit physics based turbulence model is used, instead the residual
based numerical stabilization is interpreted as a turbulence model based on the
primitive Navier-Stokes equations, as a direct finite element simulation (DFS).



There is no explicit representation of the two phases or the interface, aside from
the phase separation term, which acts as an optimization of the method, reduc-
ing diffusion of the interface. For single phase turbulent flow this methodology
is validated for a number of benchmark problems, see e.g. [16] 17, [I8, 19

2.1. The variable density incompressible Navier-Stokes equations

We write the variable density incompressible Navier-Stokes system of equa-
tions in a space-time domain §2 x I, in dimensionless form:

p(Ou+ (u-V)u) — -V - (u(Vu+ Vu')) + Vp — zzpe. =0,
R(a) =0< dip+ (u-V)p =0,

V-u=0
(1)
where the variables p,u, p and p, all functions of (z,t) € Q x I, are dimen-
sionless variables scaled through a selection of appropriate characteristic scales
Lo, Uy, po, o for the length, velocity, density and viscosity, respectively. We

may recall that the Froude number is defined as Fr = \/ZOTO’ and the Reynolds

number as Re = poﬁi%UO. . To complete the system we also need to add initial
and boundary conditions to .

In some of our benchmark problems we can consider very high Reynolds
numbers, we drop all viscous terms in the Navier-Stokes equations, correspond-
ing to the inviscid Euler equations. We denote by &1 = (u, p,p)” the vector of
unknowns, and we denote by R,,, R,;, and R, the strong residuals of the mo-
mentum, density, and continuity equations, respectively. The total residual can
then be expressed as R = (R, Ry, R.).

2.2. Finite element method

We now formulate the DFS finite element method of (1f) with slip boundary
conditions for the velocity (u-n = 0) and homogeneous Neumann boundary
conditions for the density and pressure. We subdivide the domain €2 into a
conforming tetrahedral mesh €2;,, and the time interval I into a collection of
subintervals I,, = (t,—1,t). From a space-time finite element formulation with
continuous piecewise linear approximation in time, and corresponding piecewise
constant test functions in time, we formulate the method over a time interval
I, as: find a(t,) = 4™ € (Wy)3 x W x W such that

r(a,v) =0, Vve (W) xW xW, (2)

where v = (v, 1, ¢)" is the vector of test functions, W a standard finite element
space of piecewise linear Lagrange basis function, and (Wy)? the corresponding
finite element space of vector functions satisfying a slip boundary condition.



The weak residual we define as

r(a,v) = p((a, v) + ((@-V)u, v)) + p (V°0, Vv)

+(Vp, v) = (pg, v) + LS,, +5C,,

+(p, m) + ((@-V)p, n) = coeyy (01 — p)(p2 — p) (1, Vi) + LS, + SC,

+2At (V" —p"h), Vg) + (V-u", q) + LS., (3)
where the bar and the point over the unknowns mean (-) = % and () =
%, respectively, (-, -) is the L? scalar product, V*(:) = V(-)+V(-)T, and
At =" — "~ is the time step length. The term —c.., (p1 — p)(p2 — p) (1, V1)
in Eq. is here called separation term because it reduces the mixing of the
two fluids. In this term, 1 = (1,1,1) is the vector of ones, p; and ps are the
densities of the two phase fluids, satisfying ps > p1, Ceep = m7 and
| -]l is the L' norm. The term 2 At (V(p"™ — p"~'), Vq) in the last component
of the residual in corresponds to a Schur complement preconditioner [20],
where the n superscript denotes the iteration index in the fixed-point iteration,
which means that the Schur term vanishes as the iteration converges.

The Galerkin least squares (GLS) stabilization terms in are defined by

LS, — (d R, Rv) LS, = (d R, R,,) . LS. = (d R, Rq) Y

with the stabilization parameter d = Ch3/2, C' > 0 a constant of unit size, and

i p(a- V)a+ Vp — pg %ﬁ(ﬁ V)V
R = ﬁvﬁ_lv(csep(pl_ﬁ)ﬁ) ) Ry = E{"Vﬁ ’
V-ua V-v
%n(ﬁ -V)u Vq
Rn = §ﬁ'vn_1'v(csep(p1 _/7)77) ) Rq = 0
0 0
The shock-capturing terms in (3] are defined as

SC,. = a1y (e1h® Roc + 2h*/2) (Vat, 9) | (5)
SCu = [u” 1 (e1h*Roc + e2h®?) (V5. V), (6)

where Rse = R,(w,p) + ||[R,.(0, p,p)||;, with ¢; > 0 and ¢, > 0 constants of
unit size.

We note that we recover the constant density case by removing the density
equation from 7 together with the corresponding modifications in the finite
element method. The DFS methodology for the constant density Navier-Stokes
equations is described in detail e.g. in [6].



2.3. ALE finite element method

The problems we target in the marine based renewable energy area often
includes a moving interface, between water and air, or between a fluid and a
structure, or both at the same time. There are two ways to address this prob-
lem in the computational model. Either the interface is implicitly represented
(interface capturing), e.g. as a level set of a scalar function, or the interface
is explicitly represented (interface tracking), e.g. through deformation of the
computational mesh. The approach described above, to model the two phase
flow of air and water by a variable density is an example of interface capturing.

To track the interface explicitly with the mesh, the mesh deformation needs
to be taken into account also in the finite element formulation. This can be
done e.g. by a local ALE (Arbitrary Lagrangian-Eulerian) approach described
in [12] for fluid-structure interaction, by subtracting the mesh velocity g from
the convective velocity over each time interval I,,. That is, all terms of the form

p(a-V)a
(8-V)p
are modified into
p(u—p)-V)a
(@=5)-V)p
in equation . In the next section we illustrate the framework both for a

variable density model, a constant density model, and an ALE constant density
model.

2.4. Adaptive finite element method

As described in [21], the DFS framework is naturally equipped with adaptive
algorithms. An adaptive algorithm is based on a local error indicator for each
element in the mesh, and a stop criterion for the algorithm. Both the local error
indicators and the stop criterion are derived from a posteriori estimates of the
error in chosen output functions. The basic component of the a posteriori error
estimation is the solution of an adjoint problem which is derived from the con-
tinuous Navier-Stokes equations. In this article we illustrate an adaptive mesh
refinement algorithm for a constant density model, whereas we leave adaptive
algorithms for the variable density model to future work.

The adjoint problem is a system of convection-diffusion-reaction equations
solved backwards in time, with the convection reversed so that transport is
directed upstream. To estimate the error in drag, data for the adjoint problem
is chosen as boundary data on the turbine, and the error indicator takes the
form of the residual weighted by the solution of the adjoint problem. For a
detailed description of a posteriori error estimation and the adjoint problem,
see [21].

An adaptive mesh refinement algorithm takes the following form, where we
for simplicity use the same space mesh and the same time step length for all
time steps: Given an initial coarse computational space mesh QY| start at k= 0,
then do:



Compute approximation of the primal problem using Qﬁ

Compute approximation of the adjoint problem using QZ

If the stop criterion is satisifed then STOP, else:

On the basis of the size of the local error indicator, mark a fixed fraction
of the elements in Qﬁ for refinement. Obtain a new refined mesh QlfLH,
using a standard algorithm for local mesh refinement.

5. Set k= k+ 1, then goto (1).

- o

3. Results

We now consider four examples to highlight the potential of the DFS frame-
work for high Reynolds number flow simulation in marine based renewable en-
ergy applications. The first two problems are free surface problems which we
simulate using the variable density model, one regular wave where we com-
pare against an exact solution, and the MARIN benchmark for which we have
detailed validation data.

Next we consider the problem of a vertical axis turbine, to be used e.g. for
ocean stream energy conversion. Validation data is not available at this point,
but will be available for future studies. Instead we use the example to illustrate
the potential of the ALE version of the methodology, where the rotating turbine
is modeled by rotating the whole computational domain. The model geometry
is fairly detailed, but several simplifications were used in this initial study, such
as not including the ground and assuming a constant inflow velocity.

Finally, we present a prototype decay test for a floating cube. This test
illustrates the coupling of the presented two-phase method together with the
ALE metodology.

3.1. The regular wave benchmark

In this section we will simulate a regular wave derived from the Stokes linear
wave theory, commonly used to validate two phase flows solvers. The surface
elevation of the wave 1 and the velocity of the water u,, are the exact solution of
the equations for an irrotational and incompressible two dimensional flow with
dynamic free surface boundary condition, see [22] for instance.

The velocity of the wave is given by

mH
u, T sinh(d) (cosh[k(y + d)] cos 0, sinh[k(y + d)] sin9) , (7)
and the surface elevation is
H
n= ) cos b, (8)

where H is the wave height, d is the mean water depth, T the wave period,
0 = kx — wt, with k is the wave number and w = 27/T the angular wave
frequency. Since we are considering deep water we have to obtain the wave
number from the equation k = w?/gtanh(kd).



For our simulations, we consider H = 2m, T = 4s and d = 40m. We solve
the non dimensional form of the Navier Stokes equations [1| with the following
characteristic scales

po = 1000kg/m?, o = 2 x 103kg/sm, Ly = 1m, Uy = 1m/s, (9)

therefore p; = ”ZST = 0.001 and py = ”w;% = 1. With these values we obtain

Re = 5 x 10°. To obtain the exact solution from the linear wave theory the
viscous effects are not taken into account, but in our simulations we include the
viscous term in our equations, in addiction to the stabilization terms.Thus we
define the viscosity as

pP—P
P2 — P1

H= (p2 — 1) (10)

where p; = ":—0 =102 and py = ”WM% =1.

The computational domain considered is Q = [0, 100] x [—4, 6] being y = 0
the sea level, and we impose Dirichlet conditions for the density and velocity
on the bottom, left and right of the boundary and outflow on the top. For the
initial conditions we consider the exact solution at ¢ = 0. Our triangular mesh
has 41013 vertices and h,,;, = 0.049.

To goal of this test is to compare the behaviour of our method with and
without the separation term to ensure that it effectively maintains better the
separation surface between the two fluids.

If Figure[1| the density obtained with our simulations and the exact solution
are compared at instant ¢ = 4s. As can be observed both solutions are similar
and show good agreement with the exact solution but our solutions show more
diffusivity as can be expected. However, the separation term makes the solution
less diffusive.

To have a more precise idea of the error we compute ||pn, — Il pwavell 12 ()
in every time step, with pyqve defined as

punele) = { 11022 1) "

and ITj, the classical Lagrange interpolation operator. In Figurd2]we compare the
error obtained with and without using the separation term in our simulations.

3.2. The MARIN benchmark

A standard benchmark in marine engineering for a wave impact or dam
break is the MARIN benchmark [23], consisting of a door opening, releasing
a volume of water and creating a wave which impacts a box, representing for
example a container on a ship, see Figure |3 Pressure sensors are mounted on
the box, providing validation data.

We apply the DFS model for variable density to simulate the MARIN
benchmark, using a tetrahedral mesh with approximately uniform mesh size and
ca. 2 million vertices. In Figure [f] we visualize the density in the simulation,
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Figure 1: Density field at ¢ = 4s simulated (left) and compared with the exact solution
(right), where the exact and simulated solutions are blended together, to allow inspection of
the diffusion of the interface. Above the solution with the separation term and below without
it. The exact solution has the sharp interface with clearly visible aliasing.
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Figure 2: Error ||pp — HppwavellL2(q) in every time step computed with and without sepa-
ration term.



Figure 3: Snapshots from a video of the experiment (right) and reference VOF simulation
(left) for the MARIN benchmark [23] at ¢t = 0,1,2, 3,4, 5s.

showing the evolution of the water surface e.g. identified as the level surface for
p = 0.5, and in Figure [5| we compare to the case without the phase separation
term in . The pressure signal for pressure sensors P1 and P7 [23] are compared
between the simulations and experiment in Figure [0}

Figure 4: DFS simulation with phase separation for the MARIN benchmark [23]. Density
slice and isosurface for p = 0.5 at t =0, 1,2, 3,4, 5s.

We note that the evolution of the water surface is qualitatively reproduced
qualitatively in the simulation, but without the phase separation term we find
that the transition region in the density between water and air is widening
as the simulation progresses. Quantitative comparison of the pressure sensor
data reveals that the simulation with the separation term closely follows the
experimental measurements, at least up to time ¢ &~ 5.5, whereas the simulation
without separation term largely fail to capture the pressure signal. Similar
behaviour can be seen in Figure [7] where the water height on two sensors H2
and H4 of the experiment is compared against the simulation results with and
without separation term.

10



isrec s s e

ke bk sk ——

R — iksarenc s b Pk ——

Figure 5: DFS simulation without phase separation for the MARIN benchmark [23]. Density
slice and isosurface for p = 0.5 at t =0, 1,2, 3,4, 5s.
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Figure 6: Pressure over time for experiment and simulation with and without the phase
separation term for the sensors P1 and P7 in the MARIN benchmark [23].
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Figure 7: Water height over time for experiment and simulation with and without the phase
separation term for the sensors H2 and H4 in the MARIN benchmark [23].

3.8. Vertical axis turbine

A geometric model of a vertical axis turbine was created, similar to an ex-
isting turbine which is deployed to the field. In future studies validation data
will thus be available, but here we include initial simulations to illustrate the
complexity of the geometrical model, and the added challenges of a rotating
turbine. The turbine diameter is 6.48 m and the blade height is 5 m. The
blades are 0.25 m in chord in the 3 m center section and are linearly tapered
the last meter on each side to a chord of 0.15 m at the blade tip. The profile is
a NACAO0021 on the blades.

In this reduced model we leave out the ground effects completely, so that
the turbine is placed inside a volume of air with a constant inflow wind speed
of 1m/s, see Figure In the case of a vertical axis turbine it is possible to
simulate the rotating turbine by rotation of the full computational domain, with
a suitable choice of domain. Here we choose a cylindrical domain of diameter
60m and length 20m, with the turbine axis placed in the centerline of the
cylinder domain, see Figure [9]

In Figures we illustrate an adaptive mesh refinement algorithm with
respect to the full drag force on the turbine, were we plot the mesh, the velocity
and the adjoint velocity. Figure [15|shows the mesh sensitivity in the total drag
of the turbine, with a coarsest mesh of 484 489 vertices and the finest mesh
of 1 754 970 vertices. In Figure we plot the drag force over time for a
stationary turbine, and two rotation speeds, with two inflow speeds. We see a
clear oscillatory behavior of the drag, and also a higher drag for the low inflow
speed-high rotation speed case.

12



Figure 8: Turbine CAD model.

L.

Figure 9: Cylindrical computational domain that contains the turbine model.
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—107/200 rad/s
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3.4. Rotating turbine

We next turn to the case of a rotating turbine. Due to the particular con-
struction of the vertical axis turbine, it is possible to simulate the rotation of the
turbine by rotation of the full computational domain using an ALE technique.
We illustrate this approach in two examples, one case with a rotational speed
—m/200rad/s and one case with rotational speed —107/200rad/s, visualized in
Figure [13| and Figure respectively. The mesh corresponds to the coarsest
mesh in the fixed turbine case.

Figure 13: Rotating turbine at rotational speed —m/200rad/s , for 4 snapshots in time:
horisontal (left) and vertical cuts (right).

What can be observed is that the wake structures are different between the
two cases. The slow rotation results in larger wakes, whereas with the faster
rotation the wakes are smaller. This is consistent with observations of a flow

17



Figure 14: Rotating turbine at rotational speed —107/200rad/s , for 4 snapshots in time:
horisontal (left) and vertical cuts (right).
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separation dependence on the rotation speed, e.g. dynamic stall effects, see
e.g. [24]. In future studies we will investigate such effects in more detail, with
particular focus on flow separation over the turbine blades.

We note that in this example we have not used adaptive mesh refinement.
One reason for that is that we cannot directly employ the same strategy as for
the fixed turbine, since even if the computational domain is symmetric in the
vertical plane, the locally refined mesh is not. Another adaptive strategy is
needed for the ALE case of a rotating domain, which we leave for future work.

3.5. Floating body decay test

We simulate three-dimensional two-phase flow around a floating cube. The
decay test consists of giving a downwards initial velocity to the cube and study
the oscillation that occurs. We call 1, z2, and x3 the three space coordinates.
This is a preliminary test case were the force of the fluid on the cube is only
taken into account in the vertical direction xo, then the cube only moves in
this direction. To this purpose, a simplification of the rigid body motion [25]
is used here and briefly described in what follows. We compute the vertical
force applied by the fluid on the cube boundary by F = p.V.g + fI‘c pesds,
where p., V., and I, are the density, the volume, and the boundary of the cube,
respectively, and ey is the unit vector in the x5 direction. By the Newton’s
second law F = p. V. 0yw, we compute w which is the vertical velocity of the
cube, and move the mesh consequently. As explained in subsection the
boundary of the cube is tracked with the mesh by an ALE approach using the
cube velocity w.

The dimensions of the computational domain are —10 < z; < 10, —4 < 25 <
4, and —4 < z3 < 4. A mesh of 353740 grid points is used for this simulation.
The minimum edge lenght of the mesh being 0.0308. The floating cube is initially
defined by —0.5 < z1 < 0.5, —0.5 < x5 < 0.5, and —0.5 < x3 < 0.5, being the
center of mass of the cube placed at the origin (0, 0, 0) when the simulation
starts. The flow is initially at rest and the cube has an initial vertical velocity of
(0, -1, 0). The non dimensional form of the Navier-Stokes equations (1|) are used
in this paper. The non dimensional densities of the two flows are p; = le — 3
and py = 1, and the non dimensional density of the cube is set to p. = 0.55. As
shown in Fig. the interphase between the two fluids is the plane x5 = 0.0,
then the initial density is po when x5 < 0.0 and p; otherwise. In this preliminary
test case we prescribe a uniform non dimensional viscosity of 4 = 1.0e—5, in the
future we should use different viscosities for the two fluids. The characteristic
scales used in this test case for the nondimensionalization of the equations are:
po = 1kg/m3, uy = 1kg/sm, Ly = 1m, Uy = 1m/s. Slip boundary conditions
are set everywhere.

In Fig. [I7] we plot the filled contours of the density on a xz2-plane passing
through the origin of the domain, for different times. The density of the initial
time as well as times corresponding to maximum and minimum displacements
are ploted. In Fig. we plot the vertical displacement of the center of mass of
the cube over time. We observe the expected decay of the vertical movement of
the cube when time advances.
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Figure 15: Drag force of the fixed vertical axis wind turbine, over 4 adaptive iterations.
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Figure 16: Vertical displacement of the center of mass of the floating cube over time.
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(a) t=0.0s (b) t=0.3s

(c)t=1.0s (d) t=3.0s

(e) t=3.6s

Figure 17: Filled contours of the density on a slice of the domain on the xjxza-plane, for
different times, from ¢t = 0.0s to t = 3.6 s.
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4. Summary and Discussion

In this article we have presented a framework for simulation of turbulent
flow in applications of marine based renewable energy, with the characteristics
of high Reynolds numbers, free surface flows and breaking waves, and fluid-
structure interaction. The framework extends the DFS (Direct finite element
simulation) framework for constant density flow [2I] to variable density flow,
which is used to model ocean waves in a multiphase model of water and air, and
ALE moving domains. The DFS methodology has a strong mathematical foun-
dation [21], and extensive validation of the methods [16, 17, 18, 19]. All methods
are implemented in the open source software FEniCS, targeting the whole range
of platforms from standard PCs to massively parallel supercomputers [I1]. The
framework can be extended with adaptive algorithms.

We illustrate the capabilities of the methods in several examples: a regular
wave example where we see a close match to the exact solution, the MARIN
benchmark where we show that the simulation qualitatively and quantitatively
reproduce the wave and local pressure of the available validation data; a vertical
axis turbine which is investigated for the case of a fixed turbine, as well as
two different rotation speeds using an ALE method; and finally a prototype
simulation of a decay test of a floating body, with both multi-phase and moving
boundary, where we observe the qualitative decay behavior..

We conclude that a DFS method for inviscid variable density incompressible
flow, without any explicit treatment of a level set distance function, apart from
the addition of a phase separation term, appears to perform well as a two phase
model, demonstrated for both the regular wave and the MARIN benchmark.
In [7], a similar performance is observed for the MARIN benchmark at similar
mesh resolution, but where an explicit level-set method is used which requires
the solution of an eikonal equation.

The DFS method is straightforward to extend to ALE to treat rotating
turbines as demonstrated, and also in the multi-phase setting as demonstrated
in the floating body decay test prototype simulation, and one future goal is to
combine a rotating turbine mounted on a floating platform with waves hitting
the platform. In future work we will further develop the adaptive algorithms
for variable density flow and ALE methods, and we will also study the vertical
axis turbine model in more detail.
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