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Abstract

The discovery of high-temperature superconductors in 1986 represented a major experimen-
tal breakthrough (Nobel Prize 1987), but their theoretical explanation is still a subject of much
debate. These materials have many exotic properties, such as d- and p-wave pairing and density
waves. The appearance of unconventional pairing is examined from a microscopic model, taking
into account important properties of hole-doped copper oxides. We consider an exchange inter-
action between fermions and dominantly inter-site bipolarons to be the mechanism which leads
to the pairing. We connect its momentum dependency to the well-established fermion-phonon
anomalies in cuprate superconductors. Since charge carriers in these materials are strongly corre-
lated, we add a screened Coulomb repulsion to this exchange term. We avoid any ad hoc assump-
tions like anisotropy, but rather provide a microscopic explanation of unconventional pairing for
coupling strengths that are in accordance with experimental facts. One important outcome is a
mathematically rigorous elucidation of the role of Coulomb repulsion in unconventional pairing,
which is shown to be concomitant with a strong depletion of superconducting pairs. Our theory,
applied to the special case of LaSr 214, predicts at optimal doping (i) a coherence length of 21Å,
which is the same as that obtained from the Ginzburg–Landau critical magnetic field measured
for this material, and (ii) d-wave pair formation in the pseudogap regime, i.e., at temperatures
much higher than the superconducting transition temperature. We think that the understanding
of pairing symmetry and the pseudogap phase are central issues in the theoretical comprehension
of high-temperature superconductivity, with possible technological applications like s-, d-, and
p-wave Josephson junctions used nowadays in quantum computers.

Keywords: High Tc-Superconductivity, phonon anomaly, cuprates, bipolaron, d-wave, s-wave, p-
wave, pseudogap.
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1 Introduction
In all cuprates, there is undeniable experimental evidence of strong on-site Coulomb repulsions, lead-
ing to the universally observed Mott transition at zero doping [1, 2]. This phase is characterized by a
periodic distribution of fermions (electrons or holes) with exactly one particle per lattice site. Doping
copper oxides with holes or electrons can prevent this situation. Instead, at sufficiently small tempera-
tures a superconducting phase is achieved, as first discovered in 1986 for the copper oxide perovskite
La2−xBaxCuO4 [3].

As explained in [5–7], charge transport only occurs in cuprates within two-dimensional isotropic
CuO2 layers made of Cu++ and O−− ions. The lattice composed by copper and oxygen ions in these
layers is assumed in most of the theories to have a cubic symmetry and is thus invariant under the
group {0, π/2, π, 3π/2} of rotations (C4 symmetry). This is experimentally verified in the important
family of tetragonal cuprates like La2−xSrxCuO4 and La2−xBaxCuO4 (see, e.g., [4, Sect. 9.1.2], [5,
Sect. 2.3], [7, Sect. 6.3.1]), but the actual symmetry group of most of CuO2 planes in cuprate
superconductors is only C2 like in YBa2Cu3O6+δ (see, e.g., [8, Sect. I.C.3] or [4, Sect. 9.1.2]). In
some cases, the CuO2 layers are even non-centrosymmetric, like in Bi2Sr2CaCu2O8+δ [9]. In the
isotropic case (C4 symmetry), wave functions on the lattice can be uniquely decomposed into three
orthogonal components, each having a well-defined parity with respect to the lattice rotations: The
s-wave component is invariant under these 4 rotations, the d-wave one is antisymmetric with respect
to the π/2-rotation and the p-wave one is antisymmetric with respect to the π-rotation (reflection over
the origin), just like “s”, “d” and “p” atomic orbitals.

In conventional superconductivity, like in metallic superconductors, charge carriers are electron
pairs with zero total spin and s-wave symmetry, i.e., their wave function is invariant under any lattice
rotation. The situation for superconducting cuprates is, however, more complex. On the one hand,
it is believed that spin-triplet and spin-singlet states are pairs with, respectively, odd and even par-
ity with respect to the π-rotation. On the other hand, it is firmly established that fermion pairs in
cuprate superconductors have zero total spin [8]. This leads to s- or d-wave superconductivity. Since
the s-wave pairing is supposed to be suppressed by the strong on-site Coulomb repulsion, d-wave
superconductivity is expected. This prediction is experimentally confirmed. See [2, 6, 8].

Nevertheless, as explained in [10, 11], 100% of d-wave pairing is only demonstrated for surface
sensitive experiments like those in [8], such as tunnelling and photoemission. For experiments in-
volving bulk properties, a non-vanishing small s-wave component is experimentally seen [11–18].
This means, in particular, that the s-wave component of the wave function depends on the distance
from the surface [13]. Müller [10] emphasizes that this is a consequence of the symmetry breaking
present at the superconducting/vacuum interface, together with the smallness (a few nanometers) of
the coherence length ξ in cuprate superconductors. Therefore, we think that a theoretical explanation
of unconventional pairing (as a function of material features) including the delicate interplay between
s- and d-wave superconductivity may pave the way to a microscopic theory of high-temperature su-
perconductivity, even if it is sometimes claimed, like in [32, Chap. 8, p. 250], that a pairing theory
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is irrelevant to explain the superconducting phase. In this paper we tackle this issue via controlled
solutions of a model that takes into account strong, screened Coulomb repulsions.

Some of the more popular theoretical models for cuprate superconductors are summarized in [6,
Chap. 7]. They are usually inspired by the celebrated Hubbard model in two dimensions. Explicit
solutions of this model are, unfortunately, only available in one dimension and its use for higher
dimensions necessarily requires either numerical methods or the derivation of more tractable effective
models, for example via perturbative arguments. In this context, one can use either the strong or
weak coupling regime, but both cases are unrealistic with respect to physical properties of cuprates:
The strong coupling regime yields to a ferromagnetic phase only [19, 20], while any weak coupling
approach is not compatible with the experimentally observed, strong, on-site Coulomb repulsion in
CuO2 layers.

In connection to the Hubbard model are the t-J model (an extension of the Heisenberg Hamilto-
nian adapted to weakly hole-doped cuprates), the resonating valence bond (RVB) theory in the under-
doped regime, and the effective spin fluctuation model. These theories have successfully predicted
a d-wave superconducting ground state, but the critical temperature deduced from the famous t-J
or RVB theories of superconductivity seems to be very small, if it exists at all [10]. Moreover, [21]
claims that a magnetic pairing mechanism based on the spin-fermion model and on the t-J model
cannot explain tunneling, ARPES, or neutron data in cuprate superconductors.

As stressed in [22, Part VII], an important phenomenon which is usually not taken into account
in these theoretical studies is the existence of polaronic quasiparticles in relation with the very strong
Jahn-Teller (JT) effect associated with copper ions. Indeed, at least as early as 1990, the existence of
JT bipolarons in copper oxides is discussed in the literature [23]. The role of polarons is also empha-
sized in the celebrated paper [3] since it was the JT effect that led to the discovery of superconductivity
in cuprates. See [10, p. 2] or [11, 24].

Nevertheless, in one recent review [2] on high-temperature superconductivity the word “polaron”
does not even appear while polarons are claimed to be essential ingredients in books, reviews and
many papers. See, e.g., [25–29] and references therein. Indeed, some scientific communities focus
instead on the antiferromagnetic properties of copper oxides. It is intriguing, however, that the ferro-
magnetic strontium ruthenate Sr2RuO4 can support superconductivity within RuO2 layers [30, 31].
This phenomenon appears at much lower temperature than in cuprates, making the copper and maybe
the antiferromagnetism important, but not necessarily pivotal, to achieve superconductivity.

On the other hand, several many-polarons theories of superconductivity exist, as explained in [6,
Section 7.4.3] and [32, Chap. 5, 7, 8]. These theories are usually based on Hubbard or t-J models
with Fröhlich electron-phonon interactions, in order to allow for polaron formation. For instance, the
bipolaron theory of Alexandrov and coauthors is based on light bipolarons [33] as charge carriers.
Alexandrov claims in [34, p. 4] that “cuprate bipolarons are relatively light because they are inter-
site rather than on-site pairs due to the strong on-site repulsion, and because mainly c-axis polarized
optical phonons are responsible for the in-plane mass renormalization.” See for instance [34–37] and
references therein.

In [38] a theory based on the t-J model with two (spin and charge) fermionic channels connected
via Fröhlich electron-phonon interactions is numerically studied. This theory seems to be promising
since it gives realistic critical temperatures, in contrast to the single-band t-J model, and reproduces
both the doping dependence of the pseudogap temperature and the giant oxygen isotope effect, as
explained in [10, Section 3].

However, even after three decades of theoretical studies, including the metaphoric string theory
approach to condensed matter via the AdS/CFT duality, and in spite of many significant advances,
there is still no widely accepted explanation of the (polaronic or not) microscopic origin of uncon-
ventional superconductivity. A large amount of numerical and experimental data is available, but
no particular pairing mechanism (through, for instance, antiferromagnetic spin fluctuations, phonons,
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etc.) has been firmly established [6, Section 7.6]. In fact, the debate seems to be strongly polar-
ized [39] between those using a purely electronic/magnetic microscopic mechanism and those using
electron-phonon mechanisms.

Our theoretical approach differs from all theories mentioned above and predicts, for cuprates,
dominant d-wave pair formation in the pseudogap regime, that is, at temperatures much higher than
the superconducting transition temperature (see, e.g., [40]). It stems from a microscopic model –
first proposed in 1985 by Ranninger-Robaszkiewicz [41] (see also [42, 43] or [6, Section 7.4.3]) and
independently by Ionov [44] – which has never been investigated in the presence of strong Coulomb
repulsions.

2 Experimental Foundations of Our Microscopic Approach

2.1 Bipolaron-fermion-exchange Interaction
In contrast to [33, 34] we assume that Jahn-Teller (JT) bipolarons in cuprates are not the main charge
carriers in the superconducting phase. Polarons and thus bipolarons (more generally, n-polarons,
n ∈ N) are rather charge carriers that are self-trapped inside a strong and local lattice deformation
that surrounds them. They are formed from fermions “dressed with phonons”. A priori, such (strong
and local) lattice deformations attached to n-polarons can barely move and this is not in accordance
with the known mobility of superconducting charge carriers. See, for instance, [32, 48, 49] for recent
discussions on the (im)mobility of (bi)polarons in cuprates. In fact, like JT polarons [45], JT bipo-
larons in copper oxides probably have a large mass, even in the case of inter-site bipolarons. Note
that a very large mass has indeed been demonstrated in [46] from experiments, but this result has
been criticized in [47]. We show that the existence of light, bound pairs in oxygen layers is not in
contradiction with (mediating) heavy bipolarons in copper layers.

Our assumption is supported by the fact that both fermionic and polaronic quasiparticles have been
experimentally observed within cuprates via magnetic susceptibility, EXAFS, XANES, pulse-probe,
photoexcitation, NMR/NQR, etc. Indeed, in 1993, using extended X-ray absorption fine structure
(EXAFS) on the Bi2Sr2CaCu2O8+δ (Bi2212), [50] brings to light a first experimental evidence of
two components within the CuO2 plan, a localized one associated with polaron formation and an-
other delocalized one. This is also confirmed in the key experiments [51–54] (and references therein)
for Bi2212 and [55–59] for La-based cuprate superconductors (La2−xBaxCuO4, La2−xSrxCuO4,
La2CuO4.1). For instance, [52] obtained in 1994 the distribution of the density of the coexisting
polarons and the Fermi liquid for the Bi2Sr2Ca1−xYxCu2O8+δ family, reinforcing their pivotal rôle
in the superconducting phase. In [56] experimental results on La1.85Sr0.15CuO4 and La2CuO4.1 are
consistent with the picture of the superconducting state where a long-wavelength polaronic charge
density wave coexists with itinerant charges. In 2017, by using X-ray absorption near edge struc-
ture (XANES), [59] shows a remarkably large and strongly doping dependent of the oxygen isotope
(16O vs. 18O) effect on the pseudogap temperature of La2−xSrxCuO4, demonstrating “a substantial
involvement of the lattice in the formation of the pseudogap, consistent with a polaronic approach to
cuprate superconductivity.” See also discussions in [10, 60].

During the last twenty years, this experimentally fact has been taken as a key ingredient for super-
conductivity in various theoretical studies, all emphasizing two-component models: hole polarons vs.
hole bipolarons via addition of fermions [61], electrons in two bands [62], systems consisting of (pre-
formed, Bose-like) pairs and itinerant electrons [63–67], electron gas within a superlattice of quantum
stripes (background made of polarons ordered in a charge density wave) [68], (bipolaronic) BEC-like
condensate vs. BCS condensate [69], correlated Fermi liquid and stripes [70], localized 1/2 spin (at
the copper sites) vs. itinerant holes (at oxygen sites) [71] within the 2D Kondo lattice, polaron-like
“stripons” and “quasi-electrons” [72], etc. All these theoretical studies significantly differ from the
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one presented here.
By using the velocity of sound in copper oxides to express the lifetime of bipolarons in terms of

a length `, as estimated from [73], one sees a lifetime comparable to the lattice spacing. In fact, near
the critical temperature, remarkably ` ' ξ, the coherence length in cuprate superconductors. This
suggests a strong exchange interaction between the (Bose-like) bipolaronic state and fermion pairs.
Representing the two-dimensional CuO2 layer by Z2 in lattice units, we therefore use a coupling
function v, invariant under the π/2-rotation, to define a bipolaron-fermion (exchange) interaction

κv(x− y)(b†xcy + c†ybx), x, y ∈ Z2, (1)

where the bosonic operator bx annihilates a bipolaron at lattice position x ∈ Z2, whereas cx annihilates
a fermion pair around x ∈ Z2. See Eq. (3). The parameter κ ≥ 0 is the bipolaron-fermion exchange
strength. See Eq. (2). The space structure of the bipolaron is implemented in the definition of cx. See
Eq. (4). Note that the interpretation of mediating bosons as being bipolarons is natural for copper
oxides (see discussions below), but one may also see bx as the annihilation of another type of boson
like, for instance, an exciton (spin waves, density waves, etc.).

Observe that mobile holes added to CuO2 layers are found in the oxygen band, where supercon-
ductivity is experimentally demonstrated to take place. This has been discovered in 1987 by [74–76]
for YBa2Cu3O≈7 and in 1988 by [77] for La1.85Sr0.15CuO4, as suggested by other experiments [78,79]
on both cuprates. See [80] for more details. In particular, holes in the copper band cannot alone pro-
duce superconductivity, see for instance [5, p. 133]. The (JT) bipolaron-fermion-exchange interaction
takes into account this observation since (superconducting) fermion pairs are only in the oxygen band,
while bipolarons also involve the copper band, by being formed in the oxygen ligands of copper ions
via the strong JT effect associated with Cu. As stressed in [10, Sect. 5.2], these JT bipolarons should
have zero total spin because of the antiferromagnetic character of copper-oxides. Indeed, strong anti-
ferromagnetic copper spin correlations in CuO2 layers are ubiquitous in cuprates [6, Chap. 3]. Even
if static antiferromagnetism is rapidly suppressed by doping, resonant inelastic X-ray scattering in the
superconducting phase, for La2−xSrxCuO4 (LaSr 214) [81] and other copper-oxide compounds [82]
like underdoped YBa2Cu4O8 and overdoped YBa2Cu3O7, reveals a persistence of strong antiferro-
magnetic correlations, similar to those in the isolating phase. In this context, the formation of a JT
polaron strongly disturbs1 the antiferromagnetic order within the CuO2 layers. Spinless, strongly
localized inter-site bipolarons do not have this property, i.e., they do not modify the antiferromagnetic
background when they are created. In other words, the antiferromagnetic character of cuprates make
the creation of spinless JT bipolarons much more favorable than other polaronic configurations. A
similar issue is discussed in [10, Sect. 4] to justify the poor mobility of polarons.

The interaction (1) resembles the interband exchange interaction (a Josephson-like pairing inter-
action) originally proposed by Kondo [83], as used in [62,69]. It is also reminiscent of the celebrated
microscopic theory of superfluid Helium 4 via the non-diagonal part of the Weakly Imperfect Bo-
goliubov Hamiltonian, known to imply a depletion of the Bose condensate [84, 85]. It is completely
different from the Fröhlich electron-phonon interaction leading to the BCS theory of conventional
superconductivity. It corresponds to what was first proposed in [41, 44], except that we use inter-
site instead of on-site bipolarons, similar to [86]. Analogous exchange interactions are also used
in [63–67], except that our bosonic component does not stand for the superconducting charge carriers.
More generally, we do not see the superconducting component as some kind of Bose condensation,
like in Bogoliubov’s theory, as described for instance in [32, Chap. 8] or [49]. (We will have more to
say about that in a future paper.)

The existence of inter-site bipolarons was proposed by Mihailovic and Kabanov [87, 88], based
on facts like those derived from inelastic neutron scattering experiments [89]. In our microscopic ap-
proach it turns out that the inter-site character of bipolarons is essential to get d-wave pairing. Indeed,

1Considering a chain of CuO2 the presence of a JT polaron implies a string of reversed Cu spins behind it.
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we aim to rigorously derive this property (among other phenomena typical to cuprate superconduc-
tors) from strictly isotropic models with strong on-site Coulomb repulsions, in contrast to [86] which
neglects the Coulomb repulsion and postulates that the mediating boson is formed out of (ad hoc) two
d-wave paired electrons.

A first mathematical result in this direction has been obtained in [90] for an isotropic model in-
cluding a bipolaron-fermion (exchange) interaction and the on-site Coulomb repulsion. In this model,
we analytically show the existence of a pure d-wave pairing, in the strong coupling limit. By contrast,
in the present study we fix the parameters according to experimental data, and the definition used
for the fermion pair annihilation operator cx captures the physics of JT bipolarons in copper oxides
in a more realistic way than in [90]. We then study the model by rigorous semi-analytical methods,
meaning that they are partially numerical, but always rigorously controlled. Indeed, we obtain the
minimum energy wave functions for a two-fermion-one-bipolaron system in terms of solutions of a
continuum of non-linear finite-dimensional equations. Exactly as was done in [90], these equations
are derived from the Birman-Schwinger principle applied to the fiber (constant total quasimomen-
tum) Hamiltonians of the total (translation invariant) three-particles Hamiltonian. These non-linear,
but explicit, equations are then studied numerically, as they are defined in small dimensions. Once
the numerical solutions of the fermionic part of the wave function are established, we study their
symmetry under the π/2- and π-rotations. In particular, we analyze the s-, d- and p-wave symmetry
for the fermion pair, unlike in [90] where p-wave pairing is not considered.

2.2 Exchange Coupling Function and Electron-phonon Anomalies
In contrast to [86] the exchange interaction (1) is isotropic and the momentum dependency of the
Fourier transform of the coupling function v is pivotal in our microscopic approach. Its choice is based
on experimental facts [91,92] associated with electron-phonon anomalies in cuprate superconductors.

Phonon anomalies can be experimentally detected in doped cuprates via (i) the softening of
phonon dispersion and (ii) the broadening of phonon lines:
(i) By softening of phonon dispersion, we mean a decrease of the phonon energy at a fixed wavelength
in the presence of doping. In doped La2CuO4, the effect is maximized in the (1, 0, 0) or (0, 1, 0)
(antinodal) directions at half-breathing bond-stretching mode, that is to say the quasimomenta (π, 0)
and (0, π) in the normalized Brillouin zone T2 .

= [−π, π)2 of two-dimensional CuO2 layers (recipro-
cal lattice units). See [93,94]. By [94, Figs. 2, 7], the growth rate of the softening for (π, 0) and (0, π)
is almost constant up to optimal doping and is considerably smaller afterwards. As explained in [89],
the softening of phonon dispersion seems to be ubiquitous as it is observed for other superconductors
like YBa2Cu3O6+y and the (non-cuprate) Ba1−xKxBiO3.
(ii) By broadening of phonon lines, we mean an increase in the full-width half maximum (FWHM)
of the phonon frequency distribution at a fixed wavelength in the presence of doping. In doped
La2CuO4, the phenomenon is strongest for quasimomenta (±π/2, 0) and (0,±π/2) in CuO2 layers
and around the (optimal) doping point for which the critical temperature of superconductivity is the
highest, by [94, Fig. 2] and [95]. See also [91], which additionally reviews similar results on other
copper oxides.

Both cases (i) and (ii) indicate a singular electron-phonon interaction at quasimomenta (±π/2, 0),
(0,±π/2), (π, 0) and (0, π). As illustrated by [96, Fig. 1 (a)], the dispersion relation at (±π/2, 0) and
(0,±π/2) is well-reproduced, even at optimal doping, using the Density Functional Theory (DFT).
By contrast, the dispersion relation at (π, 0) and (0, π) is not well-reproduced by the same theory.
In the overdoped La2CuO4, for which no superconducting phase appears, the dispersion relation at
all quasimomenta in the antinodal direction is well-reproduced by the DFT [91, Fig. 18 (b)]. Since
the DFT used in [96, Fig. 1 (a)] does not take into account the formation of compound particles
out of phonons and fermions, this suggests the existence of additional quasiparticles that strongly
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Figure 1: Exchange coupling function v̂ for K ∈ [−3π/2,−3π/2]2 ⊃ T.

interact with electrons and phonons at quasimomenta (π, 0) and (0, π) and at moderate doping. In
our theory they are interpreted as being JT bipolarons. In contrast, the congruence between DFT and
experimental data for phonon dispersions at (±π/2, 0) and (0,±π/2) makes the formation of such
particles unlikely in this region of the Brillouin zone.

The electron-phonon anomalies (i) at quasimomenta (π, 0) and (0, π) are possibly related to Fermi
surface nesting [97] and van Hove singularities in CuO2 planes, that is, peaks in the electronic density
of states coming from saddlelike regions of the dispersion relation of fermions (electrons or holes).
Their connection with (d-wave) superconductivity in copper oxides has been discussed in, e.g., [8,
Sect.VI] and references therein. This relationship is mathematically confirmed in our model; see
(b) in the next section. Moreover, ARPES experiments demonstrate that, even for temperatures well
above the superconducting transition temperature, a so-called pseudogap appears at quasimomenta
(π, 0) and (0, π) in the normalized Brillouin zone. This corresponds with the pseudogap regime
found in all cuprates. See [2, Fig. 4] and references therein.

To account for the aforementioned observations, we fix a coupling function v that is isotropic,
i.e., invariant with respect to the π/2-rotation, and with Fourier transform v̂ taking maximum values
at half-breathing bond-stretching modes, that is, (π, 0) and (0, π) in the normalized Brillouin zone
T2 .

= [− π, π)2, as sketched in Fig. 1.
The focus on the phonon anomalies (i) can, however, be subject to debate. In fact, since they

subsist on overdoped La2CuO4 for which there is no longer any superconducting phase, [91, 94]
claim that (i) may be more “related to the increase of the metallicity with doping rather than to the
mechanism of superconductivity”. In the current study we do not consider the superconducting phase,
which is a collective phenomenon, but only the pseudogap regime which is expected to be related to
the formation of fermion pairs. The doping that yields the highest pseudogap temperature is near
zero doping. Indeed, the peudogap temperature decreases monotonically as a function of doping: It
is approximately 750K at x ' 0, 400K at x = 0.15 (optimal doping for superconductivity), and 200K
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at x = 0.2 [40, Fig. 26]. Therefore, a maximal phonon anomaly at optimal doping x = 0.15 cannot
be directly used to decide at which point of the Brillouin zone the bipolaron-fermion exchange is the
strongest. Indeed, the strength of anomalies (i)-(ii) depends on the density of charged carriers, and
not only on the strength of the fermion-phonon interaction. In particular, the monotonic increase of
the phonon anomalies (i) until overdoped regimes might simply reflect the increase of the fermion
density. Moreover, in the physical picture proposed here for fermion pairing, the binding energy of
bipolarons imposes an upper bound on the temperature at which pair formation is possible. Similar
to the behavior of the pseudogap temperature, [57] shows a clear decrease of the binding energy of
bipolarons as a function of doping x for La2−xSrxCuO4. For instance, it is near 1500K at x ' 0,
500K at x = 0.15 (optimal doping), and 200K at x = 0.2 [57, Fig. 2]. Additionally, one would
expect that the pseudogap temperature is related to the binding energy of (bipolaron-dressed) fermion
pairs. In our model, this energy turns out to be approximately proportional to the bipolaron-fermion
exchange strength κ ≥ 0 (cf. (1) and Fig. 6). This indicates that this effective coupling decreases
monotonically as a function of doping, which is coherent with the behavior of the binding energy of
bipolarons as a function of doping and with the accuracy of DFT at large doping.

Finally, concerning the superconducting transition temperature, we also observe the following:
The bipolaron-fermion (exchange) interaction should produce an effective attractive coupling γ for
fermions, as in the BCS-Fröhlich theory. Mathematically rigorous results [98, 99] suggest that, at
constant γ, the critical temperature of the superconducting phase rapidly decreases as a function of
doping after reaching the optimal fermion density. In fact, [99, Fig. 16] predicts the appearance of
a mixed (superconducting) phase for hole-overdoped cuprates. This seems to be compatible with
the superfluid density observed in doped La2CuO4 [100, Fig. 2(b,c) & 3(b)], which is essentially
linear as a function of temperature. This phenomenon appears because a strong Coulomb repulsion
causes a discontinuous superfluid density as a function of chemical potential [98,99]. Meanwhile, an
interaction like (1) together with repulsion terms tends to produce the same behavior. For instance,
the Weakly Imperfect Bogoliubov Hamiltonian manifests the same property when Bose condensation
appears [84, Fig. 10].

2.3 Phenomenological Consequences for LaSr 214
The following results correspond to the two-fermion-one-bipolaron sector at prototypical parameters
taken from experiments on La2CuO4 (LaSr 214) near optimal doping:
(a) In the ground state, we demonstrate the existence of bound fermion pairs with total quasimomen-
tum near either (π, 0) or (0, π), see Fig. 2. The pairs have a large bipolaronic component, i.e., they
are dressed bound fermion pairs, see Fig. 3. Again by Fig. 2, the dressed fermion pairs behave like
massive particles which have minimum energy and are at rest whenever their quasimomentum equals
(π, 0) or (0, π).

(b) The p-wave component of dressed bound fermion pairs with quasimomentum (π, 0) or (0, π) is al-
ways vanishing (Corollary 5.4). I.e., theC2 symmetry is not broken in this case, like for YBa2Cu3O6+δ

[101]. By contrast, if the Fourier transform v̂ of the coupling function v is concentrated near (±π/2, 0)
and (0,±π/2), then the p-wave component of pairs at rest dominates. See below Fig. 16. As p-wave
pairing has never been found in cuprate superconductors, this fact strengthens our assumption of a
function v̂ taking its local maxima only at (π, 0) and (0, π).
(c) By Fig. 4, we obtain 83.5% d-wave pairing and 16.5% s-wave pairing, in accordance with what
was crudely deduced from experimental data [15–17]. See also [10, Section 6]. The existence of
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Figure 2: Binding energy λ (in units of κ) as a function of the total quasimomentum K for prototyp-
ical parameters.

Figure 3: Depletion % as a function of κ at total quasimomentum K = (0, π) for on-site repulsion
strengths U0 = 1.461 (blue), 5 (green), 15 (black), 50 (red). The vertical and horizontal dot-dashed
lines highlight the 90% depletion for the prototypical parameters.
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Figure 4: s- and d-wave densities (left and right, respectively) as functions of κ at total quasimomen-
tum K = (0, π) for on-site repulsion strengths U0 = 1.461 (blue), 5 (green), 15 (black), 50 (red). The
vertical dot-dashed lines highlight the prototypical parameter κ = 0.11eV.

dominant d-wave pairing and a very strong depletion2 (ca. 90%), as observed in [100], are concomi-
tant. See dot-dashed lines in Figs. 3 and 4. In particular, the C4 symmetry is broken, as observed for
YBa2Cu3O6+δ [101].
(d) We compute at optimal doping a coherence length ξ'8a '21Å (a is the lattice spacing), which
is the same one obtained from the Ginzburg–Landau theory for this material. See Fig. 5 (in lat-
tice units) and [7, Table 9.1]. Note that the understanding of the smallness of the size of Cooper
pairs in cuprate superconductors is an important issue in the microscopic theory of high-temperature
superconductivity.
(e) Our theory predicts that d-wave pairs dominate in the pseudogap regime, i.e., at temperatures much
higher than the superconducting transition temperature of 39K for optimally-doped La2CuO4 [7, Fig.
5.1]. See black dot-dashed lines of Fig. 6. The pseudogap temperature is predicted to depend on
the strength of the inter-site (Fig. 12), but not much on the on-site (Fig. 6), repulsion. However,
at prototypical parameters, a stronger screening of the Coulomb interaction would not significantly
enhance the pseudogap temperature (cf. Fig. 12). For optimally-doped La2CuO4, the pseudogap
temperature is 400K [40, Fig. 26].
(f) On-site bipolarons imply an almost purely s-wave pairing. A considerable suppression of the d-
wave component of dressed bound fermion pairs is also found in the absence of Coulomb repulsions.
See Fig. 13 (right) for more details. Consequently, both the electronic repulsion and the inter-site
bipolarons are necessary to support a dominant d-wave pairing.
(g) Strong Coulomb repulsions are not necessary to get the strong (fermion) depletion measured
in [100]. See Fig. 13 (left). The strong depletion is related, rather, to the large mass of bipolarons, as
we see from Fig. 10. Moreover, the large pseudogap temperature [40, Fig. 26] is not compatible with
light bipolarons. See Fig. 11. The very large mass of bipolarons estimated in [46] is nevertheless
unnecessary for our microscopic theory to work: a bipolaron 10 times lighter would yield the same
phenomenology, although it still has to be significantly heavier than the holes.
(h) The mass computed in [47] for charge carriers should be seen as an estimated mass for dressed
bound fermion pairs instead of bipolarons. Our model predicts that a large effective mass m∗∗∗ of
dressed bound fermion pairs is not compatible with a depletion near 90% measured in [100]. More

2This means that the fermionic component of the dressed bound fermion pairs becomes very small in comparison with
the bipolaronic component.
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Figure 5: Normalized density |ψ̌(0,π)|2 of the dressed bound fermion pair as a function of the (relative)
position space at total quasimomentum K = (0, π) for the prototypical parameters.

Figure 6: Binding energy λ (in Kelvin) as a function of κ at total quasimomentum K = (0, π) for on-
site repulsion strengths U0 = 1.461 (blue), 5 (green), 15 (black), 50 (red). The vertical and horizontal
dot-dashed lines highlight the prototypical parameter κ = 0.11eV.

11



precisely, at such depletions, our microscopic theory implies that m∗∗∗ ≤ 80me, where me is the
electron mass. In fact, the precise value of m∗∗∗ depends strongly on the coupling function v̂ near
its maximum (at van Hove points in this case). Using the estimate m∗∗∗ ∈ [me, 3me] of [47], we
conclude that v̂ is only weakly concentrated around half-breathing bond-stretching mode, see Fig. 1.
This is coherent with the softening of phonon dispersion displayed in [94, Fig. 2].
(i) Finally, the hard-core regime, i.e., U0 � 1, captures the physical properties of dressed bound
fermion pairs quite well. See Figs. 3 (depletion), 4 (s- and d-wave components), and 6 (binding
energy). The space structure of pair correlations is also well-described in this regime: As compared
to Fig. 5, only the density at the origin is affected, in that it is strongly suppressed, which is in
accordance with the larger d-wave component seen in Fig. 4, for U0 � 1. By contrast, neither the
small hopping nor the large (simultaneously on-site and inter-site) repulsion regimes can correctly
reproduce the phenomenology of dressed bound fermion pairs at prototypical parameters for doped
La2CuO4. See Figs. 12, 14 and 15. This demonstrates that pairing in cuprates is a highly quantum
mechanical phenomenon.

3 Bipolaron-Fermion Microscopic Model
We denote by F± the bipolaron (bosonic, +) and fermionic (−) Fock spaces with one-particle Hilbert
space `2(Z2;C). The Hilbert space associated with the compound system is F− ⊗ F+. Creation and
annihilation operators at x ∈ Z2 (lattice units) are respectively denoted by b†x, bx for bipolarons and
a†x,s, ax,s for fermions (electrons or holes) with spin s ∈ {↑, ↓}. See [90] for more details.

For any hopping amplitude ε ≥ 0, repulsions U,U0 ≥ 0, range r ≥ 0 and exchange strength
κ ≥ 0, we define the Hamiltonian

H
.
= εT + U0W

(0)
f−f + UW

(r)
f−f + κWb−f , (2)

where W(0)
f−f , W

(r)
f−f are, respectively, the on-site and inter-site fermion-fermion repulsions, and Wb−f

is the bipolaron-fermion interaction, while the kinetic terms are

T
.
= hb

−1

2

∑
x,y∈Z2,|x−y|=1

b†xby + 2
∑
x∈Z2

b†xbx


− 1

2

∑
s∈{↑,↓},x,y∈Z2,|x−y|=1

a†x,say,s + 2
∑

s∈{↑,↓},x∈Z2

a†x,sax,s.

Here, hb ≥ 0 is the hopping amplitude of bipolarons relative to that of fermions.
For r ≥ 0 and λ > 0, the screened Coulomb repulsion of fermions is defined by the density-

density interactions

W
(0)
f−f

.
=

∑
x∈Z2,s1,s2∈{↑,↓}

a†x,s1ax,s1a
†
x,s2

ax,s2 .

W
(r)
f−f

.
=

∑
x,z∈Z2,1≤|z|≤r
s1,s2∈{↑,↓}

e−λ
−1|z|a†x,s1ax,s1a

†
x+z,s2ax+z,s2 .

The bipolaron-fermion (exchange) interaction term is defined by

Wb−f
.
=
∑
x,y∈Z2

v(x− y)(b†xcy + c†ybx), (3)
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Figure 7: CuO2 layer.

with v : Z2 → R being a Z2-summable function invariant under the π/2-rotation, and where

cx
.
=

∑
z∈Z2,|z|≤1

(ax+z,↑ax,↓ + ax+z,↑ax−z,↓) (4)

is the annihilation operator of a fermion pair around x ∈ Z2. Compare (2) and (3)-(4) with (1).
The choice of the operator cx is based on the structure of JT bipolarons obtained from ab initio

calculations [102] for doped La2CuO4, as described in [10, Sect. 5.2]: JT bipolarons are formed by
two antiparallel holes trapped in the oxygen ligands of two adjacent copper ions. Each oxygen ion lies
between a unique pair of adjacent copper ions, as shown in Fig. 7. We can thus associate with each
oxygen lattice site x an inter-site bipolaronic mode. We assume that the decay of such a bipolaron
at x produces a pair of fermions (holes in this discussion) in the ligands of the corresponding copper
ions. Additionally, the fermionic pair should lie between the copper ions and have its barycenter near
x. These conditions are satisfied by the following spatial configurations of the fermion pair around
x ∈ Z2: (y↑, y↓) = (x, x + z) or (x− z, x + z) with |z| ≤ 1. Compare with (4) and see Fig. 7. Note
that we can easily assign different weights to each space configuration of fermion pairs.

Based on experimental facts, the microscopic structure of cuprate superconductors is isotropic.
Hence, the real-valued function v on Z2 has to be invariant under the π/2-rotation so that the full
Hamiltonian H is invariant with respect to this rotation. However, Wb−f , and thus H, do not conserve
the fermion number, in contrast to the Fröhlich electron-phonon interaction. A model similar to H for
r = 0 is proposed in [90] to explain the appearance of d-wave paring at low energies in the presence
of space isotropy.

3.1 Prototypical Parameters from Experiments
In theoretical studies using the Hubbard model, “standard” parameters are ε ' 1, U0 ' 8 (eV) and
U = 0. In general, these are mainly derived by numerical methods. See, e.g., [6, Table 7.1.]. By
contrast, in the current paper the choice of all parameters is based on experimental data for doped
La2CuO4:
(ε) The hopping amplitude ε is obtained from the lattice spacing a = 2.672Å [7, Sect. 6.3.1] of the
oxygen ions3 and the effective mass of mobile holes m∗ ' 4me [103, Fig. 2.] for La2−xSrxCuO4

with x ∈ [0, 0.2], where me is the electron mass. This corresponds to ε = ~2/ (m∗a2) ' 0.266eV.
Compare with [6, Table 7.1.].

3This corresponds to a lattice spacing of the copper ions equal to 3.779Å.
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(U0) The oxygen band is experimentally shown to be at the origin of superconductivity. The on-
site repulsion strength U0 is thus taken to be the first electron affinity of the oxygen 16O, that is, the
energy difference between 16O− (one hole in the oxygen anion 16O−−) and 16O (two holes). By [104],
U0 ' 1.461eV. Note that U0ε

−1 ' 5.5, which corresponds to the usual strong coupling regime of all
previous theoretical studies (hard-core regime in the current paper).
(U ) The inter-site repulsion results from the screening of the Coulomb repulsion. Therefore, we set
U = U0 as a prototypical parameter. The separation of the fermion-fermion repulsion into on-site
and inter-site components is used to study the hard-core regime, which corresponds to large on-site
repulsions.
(λ) [105] claims from experimental facts that the Thomas-Fermi screening length λTF is comparable
to the coherence length ξ in cuprate superconductors. For instance, λTF ' 5Å for YBa2Cu3O7−δ.
For doped La2CuO4, we estimate this parameter, in two dimensions, via the well-known formula
λTF = (4πε× ~2)/ (2m∗e2) (SI units) with e and ε being, respectively, the electronic charge and the
dielectric constant of CuO2 layers [106, Eqs. (1.21), (5.38) in Gaussian units]. By [107, Sect. VI.C],
ε ' 30ε0 where ε0 is the dielectric constant of the free space. This yields λ = λTF ' 2Å, similar
to the YBa2Cu3O7−δ case. (Note that some mathematically-rigorous results on the 2D screening of
Coulomb interactions have been recently derived in [108, Theorem 3.2].)
(r) In two dimensions, the decay of the screened Coulomb repulsion is not exponential but rather
polynomial [106, Eq. (5.41)]. In particular, even if λTF ≤ a, it is reasonable to consider the Coulomb
repulsion for a few neighboring sites. We thus take the second screening parameter r = 2 as the
default value.
(hb) We deduce the relative hopping amplitude hb from the effective mass of (partially pinned) bipo-
larons, as experimentally determined in [46]: m∗∗ ' 695me. This corresponds to hb = m∗/m∗∗ '
0.00575. Since [46] has been criticized for the bipolaronic mass being too large (see, e.g., [47]), we
also consider larger values of the parameter hb, up to 1.
(κ) The exchange coupling strength κ is chosen in order to get 90% depletion at (π, 0) and (0, π): A
direct computation using [100, Fig. 2, Fig. 3(b)], with the lattice spacing a of the oxygen ions equal
to 2.672Å, and the effective mass m∗ ' 4me [103, Fig. 2.] of mobile holes yields, for La2−xSrxCuO4

with x ' 0.2, a depletion of superfluid density approximately equal to 90%. By Fig. 3, κ ' 0.11eV.
(v) As explained previously, we use a bipolaron-fermion coupling function v whose Fourier transform
v̂ is concentrated around (π, 0) and (0, π) in the Brillouin zone T2 .

= [ − π, π)2. Similar to [87, 88],
we choose v̂ of the form[

α
(
(Kx − π)2 +K2

y

)
+ 1
]−1 (resp.

[
α
(
K2
x + (Ky − π)2

)
+ 1
]−1 )

for quasimomenta (Kx, Ky) ∈ T2 near (π, 0) or (0, π), where α > 0. The Fourier transform v̂ is
sketched in Fig. 1. α determines the effective mass m∗∗∗ of (dressed) bound fermion pairs, the dis-
persion relation of which is represented in Fig. 2. Conversely, α can be recovered from m∗∗∗. An
estimate of this mass from experimental data on La2CuO4+y can be found in [47]: m∗∗∗ ∈ [me, 3me].
This parameter has no significant influence on our study because we generally fix the total quansi-
momentum K. Only the precise shape of Figs. 1 and 2 are dependent on α. Explicit computations
explained below demonstrate that m∗∗∗ ' 2me leads to α ' 1.35, which is our default value.

4 The 2-Fermions–1-Bipolaron Sector

4.1 Dispersion Relation of Dressed Bound Fermion Pairs

Like in [90], we study the restriction H(2,1) of H to the invariant space H(2,1)
↑↓ of one bipolaron and

one fermion pair with zero total spin. By translation invariance, H(2,1) is unitarily equivalent to some
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decomposable operator

A =
1

(2π)2

∫ ⊕
T2

A(K) d2K ,

where the fiber HamiltoniansA(K),K ∈ T2, are operators acting on the Hilbert space L2(T2;C)×C.
See Theorem 5.1. In this representation, the invariant spaceH(2,1)

↑↓ corresponds to

F
(2,1)
↑↓

.
= L2(T2;L2(T2;C))× L2(T2;C) ≡ 1

(2π)2

∫ ⊕
T2

L2(T2;C)⊕ C d2K . (5)

We denote the elements of F(2,1)
↑↓ by (Φf ,Φb), respectively the wave function of one fermion pair and

one bipolaron in Fourier space. Bound fermion pairs of minimum energy correspond to the low energy
solutions of the Schrödinger equation associated with H(2,1). Similar to [90, Lemma 8], the ground
state energy E0, defined as being the infimum of the spectrum of H(2,1), is non-positive. The strict
negativity of E0 corresponds to the formation of a bound fermion pair. An explicit criterion for that
can be provided. See, e.g., [90, Theorems 2, 3 and discussions thereafter]. We are thus interested in
the structure of wave functions in the (invariant) subspace

Gε
.
= Ran

(
1[E0,E0(1−ε)](H

(2,1))
)
,

for small ε > 0. Here, 1[E0,E0(1−ε)](H
(2,1)) is the spectral projection of H(2,1) for the interval

[E0, E0 (1− ε)], while Ran(P ) stands for the range of a projection P . Exactly as done in [90, Sect.
5], the bottom of the spectrum of H(2,1), as well as the space Gε, can be determined by studying the
ground states of the fiber HamiltoniansA(K), K ∈ T2. In particular, the existence of strictly negative
eigenvalues λ ≡ λ(K,κv̂(K)) < 0 of A(K) implies E0 < 0.

One can observe from Fig. 2 that the space Gε of nearly minimal energy (ε� 1) is related to those
quasimomenta K at which the coupling |v̂(K)| is maximal. That is, (0, π) and (π, 0) in the present
case. Therefore, we focus our study on K = (0, π), the case (π, 0) being completely equivalent.
Moreover, the same figure gives the dispersion relation of a compound particle, named here dressed
bound fermion pair, which, at minimum energy, behaves like a massive particle. There are two types
of such pairs: one which is at rest at total quasimomentum K = (0, π); the other one at K = (π, 0).

By standard perturbation theory for non-degenerate eigenvalues, one computes that, atK = (0, π)
and (π, 0),

λ(K + η,κv̂((K + η)) = λ(K,κ) + ∂2Kx
λ(K,κ)

η2x
2

+ ∂2Ky
λ(K,κ)

η2y
2

+ κ∂κλ(K,κ)∂2Kx
v̂(K)

|η|2

2
+O

(
|η|3
)

for η ∈ T2, |η| � 1. Therefore, the mass of the dressed bound fermion pair equals

m∗∗∗ =
µexµ0

µ0 + µex

me ∈ me min {µex, µ0} [1/2, 1] ,

where

µ0
.
=

~2

mea2

(
1

∂2Kx
λ(K,κ) 0

0 1
∂2Ky

λ(K,κ)

)
,

µex
.
= − ~2

2αmea2κ∂κλ (K,κ)

(
1 0
0 1

)
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are respectively the intrinsic and bipolaron-fermion-exchange-induced mass ratios with respect to the
electron mass me. Recall that a = 2.672Å is the lattice spacing. Numerical estimates at prototypical
parameters for K = (0, π) yield

µ0 '
(

80 0
0 −52

)
.

For K = (π, 0), µ0 is the same, up to a permutation of the diagonal entries. Therefore, to get
m∗∗∗ ' 2me [47], it suffices to have µex ' 2, which in turn yields α ' 1.35, which is our default
value. (m∗∗∗ ∈ [me, 3me] leads to α ∈ [0.9, 2.7].)

Being massive particles, dressed bound fermion pairs at total quasimomentum K = (0, π) or
K = (π, 0) have a dispersion relation not satisfying Landau’s criterion of superfluidity [84, p. 318].
Superconductivity in our model is thus expected, as is usual, to be a collective phenomenon. This
is in accordance with the fact that the binding energy of dressed bound fermion pairs is much larger
than the superconducting transition temperature: From Fig. 3 (blue curve), the prototypical coupling
strength is κ ' 0.11eV, leading to a binding energy of about 1250K (Fig. 6), much larger than the su-
perconducting transition temperature for La2CuO4 at optimal doping, which equals 39K [7, Fig. 5.1].
This high binding energy is consistent4 with the high pseudogap temperature T ∗ of La1.85Sr0.15CuO4

at optimal doping, which is about 400K [40, Fig. 26]. Indeed, by ARPES experiments, at tempera-
tures below T ∗, the pseudogap looks crudely like the d–wave superconducting gap. It mainly appears
for quasimomenta (π, 0) and (0, π) in the normalized Brillouin zone. See [2, Fig. 4] and references
therein. Quoting [2, p. 4], “This immediately suggests that at the very high pseudogap temperature
T ∗, pairs already start to form, while phase fluctuations prohibit superconducting order until much
lower temperatures are reached.” Our model, in the 2-fermions–1-bipolaron sector with prototypical
parameters, strongly supports the conjecture of d–wave pair formation in the pseudogap regime. This
is particularly the case inasmuch as the binding energy of bipolarons goes from about 1500K at zero
doping to 500K at optimal doping [57, Fig. 2], while T ∗, in the same doping range, goes from about
750K to 400K [40, Fig. 26] (and is thus always below 1250K).

Note that Fig. 6 demonstrates that dressed bound fermion pairs already appear at relatively small
exchange coupling strength κ, as compared with the hopping amplitude ε. Observe also that inter-site
repulsions have a large impact on the binding energy, even if their strength is much smaller than that
of the on-site repulsion, see Fig. 12. By contrast, a large U0 � 1 (hard-core regime) does not change
much the binding energy, see Fig. 6. This demonstrates, in the scope of the microscopic theory
proposed here, that inter-site repulsions constrain the pseudogap temperature. Note that the idealized
situation r = 0 (on-site repulsion only) already captures well the physics of the model at prototypical
values.

4.2 Pairing Modes
The (fiber) space of a fermion pair at constant quasimomentum K is the Hilbert space L2(T2;C) with
scalar product

〈ϕ|ψ〉 .= 1

(2π)2

∫
T2

ϕ(k)ψ(k) d2k.

We use the bra-ket notation for elements of this space. They are thus denoted by |ϕ〉, but the evaluation
of the function |ϕ〉 at fixed k ∈ T2 is written as ϕ(k) ∈ C.

4For instance, the standard enthalpy of formation of Carbon monoxide is−110.5kJ.mol−1, corresponding to 13290K,
whereas the thermal decomposition of this gas is about 4200K (the highest known decomposition temperature). For
water (as a gas), the standard enthalpy of formation is −241.818kJ.mol−1, corresponding to 29084K, with a thermal
decomposition of about 2300K.
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The lattice is invariant under the group {0, π/2, π, 3π/2} of rotations, which is generated by the
π/2-rotation. We thus define by

[R⊥|ϕ〉] (kx, ky)
.
= ϕ(ky,−kx), (kx, ky) ∈ T2,

the unitary operator R⊥ implementing the π/2-rotation on L2(T2;C). Then define the mutually or-
thogonal projectors

Ps
.
=

R4
⊥ +R3

⊥ +R2
⊥ +R⊥

4
, (6)

Pd
.
=

R4
⊥ −R3

⊥ +R2
⊥ −R⊥

4
, (7)

Pp
.
=

R4
⊥ −R2

⊥
2

. (8)

Since Ps + Pd + Pp = 1, any wave function |ϕ〉 ∈ L2(T2;C) of a fermion pair can be uniquely
decomposed into orthogonal s-, d- and p-wave components as

|ϕ〉 = |ϕs〉+ |ϕd〉+ |ϕp〉, |ϕ#〉 .= P#|ϕ〉.

Observe that
R⊥|ϕs〉 = |ϕs〉, R⊥|ϕd〉 = −|ϕd〉, R2

⊥|ϕp〉 = −|ϕp〉.

In particular, if |ϕ〉 ∈ L2(T2;C) is invariant with respect to R2
⊥, then |ϕp〉 identically vanishes and

|ϕ〉 has only s- and d-wave components.
Subsequently, we study the eigenvector (|ψK〉, 1) of A(K) associated with a strictly negative

eigenvalue λ ≡ λ(K,κv̂(K)) < 0 for those total quasimomenta K which maximize the coupling
function |v̂(K)|, typically (π, 0) and (0, π). Recall that the exchange coupling strength κ is chosen
to get 90% depletion at (π, 0) and (0, π). The depletion at total quasimomentum K is defined by the
ratio

%
.
=

100

(‖ψK‖
2
2 + 1)

% .

Using prototypical parameters provided in the previous section, Fig. 3 (blue curve) represents this
ratio as a function of κ for K = (0, π). This leads to κ ' 0.11eV when % ' 90%.

The dominant (either s-, d- or p-wave) component of |ψK〉 determines the pairing symmetry of the
dressed bound fermion pair with total quasimomentumK. By Corollary 5.4, forK ∈ {(0, π), (0, π)},
the p-wave component identically vanishes, that is, Pp|ψK〉 = 0. In general5, ψK is a non-trivial
mixture of s- and d-wave components. Using the prototypical parameters, we derive the s- and d-
wave components of the dressed bound fermion pair as a function of κ at K = (0, π). See Fig. 4
(blue curves).

For κ ' 0.11eV, i.e., at 90% depletion, the d-wave pairing is nearly maximized for the prototyp-
ical parameters. In this case, one gets

%s
.
=
‖Psψ(0,π)‖22
‖ψ(0,π)‖22

× 100% ' 16.5%

s-wave pairing, which is relatively close to the crude estimate (20%-25%) phenomenologically de-
duced from experimental data [15–17]. See also [10, Section 6].

The (normalized) density |ψ̌(0,π)|2 of the dressed bound fermion pair in the (relative) position
space is represented in Fig. 5. It is anisostropic because of the negative mass in only one of the

5For κ = 1, r = 0, K ∈ {(0, π), (0, π)}, the s-wave component only vanishes in the limit ε → 0, U → ∞,
by [90, Theorem 4].
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Figure 8: Depletion (left) and d-wave density (right) as functions of κ at total quasimomentum K =
(0, π) for r = 0 (red), 1 (black), 1.5 (green) and 2 (blue).

axes at the van Hove point (0, π). The dressed bound fermion pair corresponding to the other van
Hove point (π, 0) has wave function |ψ(π,0)〉 = R⊥|ψ(0,π)〉. Therefore, up to the π/2-rotation, it has
the same space structure as |ψ(0,π)〉. Both functions are heavily concentrated in a region of major
diameter ξmax ' 8 (in lattice units), i.e., ξmax ' 8a = 21.376Å. This is nearly the same as the
coherence length ξ = 21Å of La1.8Sr0.2CuO4, which is computed from experimental data via the
Ginzburg–Landau theory. See [7, Table 9.1] and references therein. By Fig. 5, the minor diameter
equals ξmin ' 6 (in lattice units), i.e., ξmin ' 6a = 16.032Å. Observe that [47] contributes the
estimate ξ & 16Å for the diameter of the bounded pair, which is derived from experimental data for
La2CuO4+y combined with a simple hydrogenic model (and not from the Ginzburg–Landau theory).

Numerical simulations show that ξmin and ξmax do not depend much on the choice of the range
r of the repulsion: ξmax ' 8a and ξmin ' 6a for all r = 0, 1, 1.5, 2. The effects of the parameter r
on depletion, d-wave pairing and binding energy, as shown in Figs. 8 and 12 (left), are also minimal.
However, changes in r modify the shape of |ψ̌(0,π)|2. For instance, for r = 0 the maximum value of
|ψ̌(0,π)|2 is taken at distance 1 (in lattice units) from the origin, whereas, for r = 1, 1.5, 2, its maximum
is attained at distance 2. Compare Fig. 5 for r = 2 with Fig. 9 for r = 0.

As previously explained, the effective mass m∗∗ of bipolarons is controversial. Its prototypical
value in this study is based on [46]. This corresponds to hb ' 0.00575, but in Figs. 10 and 11 we
also consider larger values of this parameter, up to the case hb = 1. It turns out that an effective mass
m∗∗ up to 10 times smaller than the one (' 695me) estimated in [46] would yield dressed bound
fermion pairs with almost exactly the same physical properties as those with default parameters. The
(fermion) depletion can never exceed 75% with no dressed bound fermion pairs when m∗∗ ≤ 8me

and κ ≤ 0.2eV, see Figs. 10 and 11. Recall that the effective mass m∗ of mobile holes has been
measured to be m∗ ' 4me [103, Fig. 2.]. Also, the binding energy of dressed bound fermion pairs
is strongly reduced for m∗∗ ≤ 8me, as compared to the prototypical situation. See Fig. 11. Recall,
however, that the small mass computed in [47] is not necessarily in contradiction with the very large
mass determined in [46] since, in our model, they refer to the mass of two different quasiparticles:
bipolarons in [46] and dressed fermion pairs in [47].

The inter-site nature of bipolarons and the presence of the strong Coulomb repulsion are both
essential for a large (> 3) d-wave-to-s-wave ratio. This is seen in Fig. 13, where the blue and red-
dashed lines represent the cases U0 = U = 0 (no Coulomb repulsion), and cx = 2ax,↑ax,↓ (on-site
bipolarons, not inter-site like in (4)), respectively. Moreover, Fig. 14 demonstrates that the behaviors
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Figure 9: Normalized density |ψ̌(0,π)|2 of the dressed bound fermion pair as a function of the (relative)
position space at total quasimomentum K = (0, π) for on-site repulsion (r = 0).

Figure 10: Depletion (left) and d-wave density (right) as functions of κ at total quasimomentum
K = (0, π) for hb = 0.00575 (blue), 0.0575 (green), 0.575 (black), 1 (red).
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Figure 11: Binding energy λ (in Kelvin) as a function of κ at total quasimomentum K = (0, π) for
hb = 0.00575 (blue), 0.0575 (green), 0.575 (black), 1 (red).

Figure 12: Binding energy λ (in Kelvin) as a function of κ at total quasimomentum K = (0, π). In
the left figure, r = 0 (blue), 1 (green), 1.5 (black), 2 (red). In the right figure, U = 1.461 (blue), 5
(green), 15 (black), 50 (red). The vertical and horizontal dot-dashed lines highlight the prototypical
parameter κ = 0.11eV.
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Figure 13: Depletion (left) and d-wave component (right) as functions of κ at total quasimomentum
K = (0, π) for U = 0 (no repulsion, black) and on-site bipolarons (red).

of the depletion and the pairing are not well-reproduced in the small hopping regime. In particular,
the symmetry of dressed fermionic pairs depends not only on the competition between the bipolaron-
fermion-exchange interaction and the Coulomb repulsion, but also on the kinetic energy. For instance,
in the limit of vanishing hopping (large effective mass of fermions) fermion pairs become purely d-
wave with a depletion which does not exceed 75%.

On the other hand, as already discussed, the hard-core regime U0 � 1 captures quite well the
physical properties of dressed bound fermion pairs, by Figs. 3 (depletion), 4 (s- and d-wave compo-
nents), and 6 (binding energy). From Fig. 15 note that the strong repulsion regime U0 = U � κ
yields a nearly pure d-wave pairing, but is not compatible with 90% depletion. Moreover, the binding
energy of dressed bound fermion pairs strongly decreases for large U0 = U � κ, by Fig. 12.

We conclude by studying the case where v̂(K) is concentrated at K = (0,±π/2) and (±π/2, 0),
instead of the half-breathing bond-stretching modes (π, 0) and (0, π). In this case, Corollary 5.4 does
not apply anymore and a non-vanishing p-wave component of the fermionic wave function appears.
At K = (0, π/2) (the other cases being equivalent), the s-, d- and p-wave components of |ψ(0,π/2)〉 at
prototypical parameters are represented in Fig. 16 as a function of κ. We see from this figure that the
formation of p-wave pairs is always favored at 90% depletion.

This demonstrates that the existence of d-wave pairs in cuprate superconductors is directly related
to the fact that v̂(K) is concentrated near half-breathing bond-stretching modes (K = (0, π), (π, 0)).
Away from those points, p-wave pairs appear and are even dominant atK = (0,±π/2) and (±π/2, 0).
No p-wave pairs are observed in cuprate superconductors and our study suggests that anomalies near
half-breathing bond-stretching modes are therefore part of the physical mechanism leading to the
formation of fermion pairs.

Note however that p-wave fermionic pairs has also been observed for non-cuprate high-temperature
superconductors. Indeed, the strontium ruthenate Sr2RuO4 is at low temperature a superconductor
within RuO2 layers and presents p-wave pairing, see, e.g., [109, Table I]. Nevertheless, our study
does not apply to this kind of material because we only consider here spin-singlet fermion pairs;
superconducting pairs in Sr2RuO4 are spin-triplets, similar to superfluid quantum liquid 3He.
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Figure 14: Depletion (left) and d-wave density (right) as functions of κ at total quasimomentum
K = (0, π) for hopping strengths ε = 0.266 (blue), 0.266 × 25% (green), 0.266 × 5% (black),
0.266× 1% (red). The vertical and horizontal dot-dashed lines highlight the prototypical parameters.

Figure 15: Depletion (left) and d-wave component (right) as functions of κ at total quasimomentum
K = (0, π) for U = 1.461 (blue), 5 (green), 15 (black), 50 (red).
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Figure 16: Depletion (left) and s-, d, p-wave densities (right) as functions of κ at total quasimomen-
tum K = (0, π/2) for prototypical parameters. The s-, d- and p-wave densities are respectively in
red, black and green.

5 Technical Proofs

5.1 Preliminaries
The Fourier transform v̂ of the rotation symmetric function v, as well as ε, hb,κ, U, U0, r ≥ 0 and
λ > 0, are all fixed. We use here the definition

w(z)
.
= Ue−λ

−1|z| + (U0 − U) δ0,|z| , z ∈ Z2,

but the proofs do not depend on this particular choice of w.
Recall that we use the bra-ket notation in L2(T2;C). As usual, |ϕ〉〈ϕ| is seen as an operator on

L2(T2;C). In particular, if |ϕ〉 is normalized, then it is the orthogonal projection on the subspace
generated by |ϕ〉. Similarly, 〈ϕ| is viewed as a map from L2(T2;C) to C.

A special role is played by the normalized vectors |ez〉 ∈ L2(T2;C), defined, at all z ∈ Z2, by
ez(k)

.
= e−ik·z for k ∈ T2. A second family {|fK〉}K∈T2 of vectors of L2(T2;C), used below, is

defined, for all K, k ∈ T2, by

fK(k)
.
= 2 (1 + cos(K + k) + cos(K + 2k))) (9)

with cos(K)
.
= cos(Kx) + cos(Ky) for any K = (Kx, Ky) ∈ T2.

5.2 Fiber Decomposition
Exactly as done in [90, Sect. 5.1], we identify, via the Fourier transform, the space

H(2,1)
↑↓

.
= `2(Z2 × Z2;C)× `2(Z2;C)

of two fermions and one bipolaron with zero total spin on Z2 with the Hilbert space F
(2,1)
↑↓ (5). The

corresponding unitary transformation U is the map from F
(2,1)
↑↓ to H(2,1)

↑↓ defined by U(Φf ,Φb)
.
=

(φf , φb), where

φf (x↑, x↓)
.
=

1

(2π)4

∫
T2

d2K

∫
T2

d2k eiK·x↑eik·(x↓−x↑) [Φf (K)] (k)
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for any x↑, x↓ ∈ Z2 and Φf ∈ L2(T2;L2(T2;C)), while, for any xb ∈ Z2 and Φb ∈ L2(T2;C),

φb(xb)
.
=

1

(2π)2

∫
T2

eiK·xbΦb (K) d2K.

Similar to [90, Sect. 5.1], we now introduce, for any fixed K ∈ T2, five operators as follows:

A
(0)
1,1 : We define the bounded self-adjoint operator A(0)

1,1(K) acting on L2(T2;C) by

[A
(0)
1,1(K)ϕ](k)

.
= ε(4− cos(k −K)− cos(k))ϕ(k) (10)

for any K, k ∈ T2. See [90, Eq. (41)].

A
(1)
1,1 : Then, for any K ∈ T2, the (self-adjoint) operator, which generalizes the one used in [90, Eq.

(42)], is defined by

A
(1)
1,1(K)

.
= A

(0)
1,1(K) +

∑
z∈Z2,|z|≤r

w(z)|ez〉〈ez|. (11)

A2,1 : Similar to [90, Eq. (43)], for any K ∈ T2, the vector |fK〉 defined by (9) yields the bounded
operator A2,1(K) : L2(T2;C)→ C defined by

A2,1(K)
.
= v̂(K)〈fK |.

A1,2 : For any K ∈ T2, the adjoint of A2,1(K) is the map A1,2(K) from C to L2(T2;C) defined by

A1,2(K)c
.
= cv̂(K)|fK〉, c ∈ C. (12)

A2,2 : For any K ∈ T2, A2,2(K) is the map [90, Eq. (45)] from C to itself defined by

A2,2(K)c
.
= εhb(2− cos(K))c, c ∈ C.

Now, similar to [90, Sect.5.1, Eq. (46)], the operators

A(K)
.
=

(
A

(1)
1,1(K) A1,2(K)

A2,1(K) A2,2(K)

)
, K ∈ T2, (13)

acting on the Hilbert space L2(T2;C) × C, correspond to the fiber decomposition of the operator
U∗H(2,1)U:

Theorem 5.1
A
.
= U∗H(2,1)U =

1

(2π)2

∫ ⊕
T2

A(K) d2K.

Proof. For any (φf , φb) ∈ H
(2,1)
↑↓ , one explicitly computes the pair of functions (φ̃f , φ̃b)

.
= H(2,1)(φf , φb):

φ̃f (x↑, x↓) =
∑

z∈Z2,|z|≤r

w (z) δx↑,x↓+zφf (x↑, x↓)

− ε

2

∑
z∈Z2,|z|=1

(
φf (x↑ + z, x↓) + φf (x↑, x↓ + z)

)
+ 4εφf (x↑, x↓)

+ κ
∑

xb,z∈Z2,|z|≤1

v(x↑ − xb)
(
δx↑+z,x↓ + δx↑+z,x↓−z

)
φb(xb)
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for all x↑, x↓ ∈ Z2, while the bosonic wave function at xb ∈ Z2 is equal to

φ̃b(xb) = 2εhbφb(xb)−
εhb
2

∑
z∈Z2,|z|=1

φb(xb + z)

+ κ
∑

x,z∈Z2,|z|≤1

v(xb − x)
(
φf (x+ z, x) + φf (x+ z, x− z)

)
.

Applying the Fourier transformation U∗ to (φf , φb) and (φ̃f , φ̃b), we get the two vectors (Φf ,Φb)
.
=

U∗(φf , φb) and (Φ̃f , Φ̃b)
.
= U∗(φ̃f , φ̃b). Using the previous definition of A(K), these vectors are

related to each other via the equations

|Φ̃f (K)〉 = A
(1)
1,1(K)|Φf (K)〉+ A1,2(K)Φb (K)

Φ̃b (K) = A2,1(K)|Φf (K)〉+ A2,2(K)Φb (K)

for all K ∈ T2. Then the assertion follows, like in [90, Lemma 7].

5.3 Ground States of Fiber Hamiltonians
Exactly as in [90, Lemma 8],

E0
.
= min spec(H(2,1)) = min

K∈T2
{min spec(A(K))} .

To examine the spectrum of A(K), K ∈ T2, we proceed in the same way as in [90, Sect. 5.2], using
the Birman-Schwinger principle [90, Proposition 26]: For all ε, hb ≥ 0 and K ∈ T2, λ < 0 is an
eigenvalue of A(K) iff it solves the equation

|v̂(K)|2〈fK |(A(1)
1,1(K)− λ)−1fK〉 = εhb(2− cos(K))− λ. (14)

Moreover, if the strictly negative eigenvalue exists, the bosonic component of the corresponding
eigenvector is non-vanishing. Compare with [90, Lemma 9, Eq. (53)].

For any fixed K ∈ T2, it is therefore important to derive a more explicit representation for the
left-hand side of (14), like in [90, Lemma 14]. The computation of this scalar product involves the
inverse of a finite dimensional matrix whose entries are integrals on the two-dimensional torus T2 of
explicit functions. This inverse is then numerically determined.

To explain this, for all r ≥ 0, define the finite (index) set

I(r)
.
= {z ∈ Z2 : |z| ≤ r} ∪ {f}.

Next, for any j ∈ {0, 1}, define the self-adjoint I(r) × I(r) matrix R(j) by

R
(j)
f,f

.
= 〈fK |(A(j)

1,1(K)− λ1)−1fK〉,

R
(j)
z,f

.
= 〈ez|(A(j)

1,1(K)− λ1)−1fK〉
.
= R

(j)
f,z ,

R
(j)
z,z̃

.
= 〈ez|(A(j)

1,1(K)− λ1)−1ez̃〉,

for any z, z̃ ∈ I(r) ∩ Z2. Additionally, we define the I(r) × I(r) matrix R̃(0) by

R̃
(0)
i,f

.
= 0 and R̃

(0)
i,z

.
= w(z)R

(0)
i,z (15)

for all i ∈ I(r) and z ∈ I(r) ∩ Z2.
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By (10), R(0) and R̃(0) are finite dimensional matrices whose entries are integrals on T2 of explicit
trigonometric functions. For instance,

R
(0)
f,f =

∫
T2

(2π)−2 |fK(k)|2

ε(4− cos(k −K)− cos(k))− λ
d2k.

Then, one gets the following assertion:

Lemma 5.2 For any fixed K ∈ T2, the I(r) × I(r) matrices R(1), R(0) and R̃(0) are related to each
other by the equation

R(0) = (1 + R̃(0))R(1) .

Proof. We infer from (11) and the resolvent equation that

(A
(0)
1,1(K)− λ1)−1(A

(1)
1,1(K)− λ1) = 1+(A

(0)
1,1(K)− λ1)−1

∑
z∈Z2,|z|≤r

w(z)|ez〉〈ez| (16)

for any fixed K ∈ T2. This equation directly yields the equality

R
(0)
i,j = R

(1)
i,j +

∑
z∈Z2,|z|≤r

w(z)R
(0)
i,zR

(1)
z,j

for all i, j ∈ I(r), which in turn yields the assertion.
By numerical methods one can explicitly check that −1 is not an eigenvalue of R̃(0) and, in that

case, this lemma uniquely determines R(1) from the explicit matrices R̃(0) and R(0). Using this
observation and (14), the eigenvalue λ ≡ λ(K,κv̂(K)) of A(K) can be numerically computed, at
any fixed K ∈ T2.

We look for strictly negative eigenvalues λ < 0 to get a (dressed) bound fermion pair in the ground
state. We restrict our study, without loss of generality, to eigenvectors of the form (|ψK〉, 1), whose
fermionic part can be explicitly given in terms of the numbers {R(1)

z,f }|z|≤r:

Lemma 5.3 For any fixed K ∈ T2 and eigenvalue λ < 0 of A(K),

|ψK〉 = v̂(K)(A
(0)
1,1(K)− λ1)−1

∑
|z|≤r

w(z)R
(1)
z,f |ez〉 − |fK〉


Proof. The proof is a direct consequence of Eqs. (10), (12), (13) and (16) together with the fact that
A(K)(|ψK〉, 1) = λ(|ψK〉, 1).

Since, by (10), A(0)
1,1(K) is a multiplication operator, one gets from this lemma an explicit ex-

pression of the fermionic part |ψK〉 of the eigenvector of A(K) associated with a strictly negative
eigenvalue λ < 0. By (6)-(8), the s-, d- and p-wave components of |ψK〉 can then be numerically
determined for any K ∈ T2.

For half-breathing bond-stretching modes one concludes from Lemma 5.3 that the p-wave com-
ponent is automatically zero:

Corollary 5.4 Let |ψK〉 be the fermionic part of the eigenvector of A(K) associated with a strictly
negative eigenvalue λ < 0. Then, for K ∈ {(0, π), (0, π)}, Pp|ψK〉 = 0, where Pp is the projection
defined by (8).
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Proof. If K ∈ {(0, π), (0, π)} then we infer from (9) that fK(−k) = fK(k), while, by (10)-(11), the
operators A(0)

1,1(K) and A(1)
1,1(K) preserve this symmetry. Therefore, R(1)

z,f = R
(1)
−z,f for any z ∈ Z2, and

we deduce from Lemma 5.3 that |ψK〉 is invariant under reflection over the origin. The assertion then
follows. Note that we use here the reflection symmetry of the interaction kernels w.
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[20] N. Datta, R. Fernández, and J. Fröhlich, Effective Hamiltonians and phase diagrams for tight-
binding models, J. Stat. Phys. 1999, 96(3), 545–611

[21] G.M. Zhao and A.S. Alexandrov, Consistent explanations of tunneling and photoemission data
in cuprate superconductors: No evidence for magnetic pairing, cond-mat/arXiv:1208.3128v2
2012
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