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ABSTRACT. Utilising some recent ideas from our bilinear bi-parameter theory, we give an
efficient proof of a two-weight Bloom type inequality for iterated commutators of linear
bi-parameter singular integrals. We prove that if T is a bi-parameter singular integral
satisfying the assumptions of the bi-parameter representation theorem, then

‖[bk, · · · [b2, [b1, T ]] · · · ]‖Lp(µ)→Lp(λ) .[µ]Ap ,[λ]Ap

k∏
i=1

‖bi‖bmo(νθi ),

where p ∈ (1,∞), θi ∈ [0, 1],
∑k
i=1 θi = 1, µ, λ ∈ Ap, ν := µ1/pλ−1/p. Here Ap stands for

the bi-parameter weights in Rn×Rm and bmo(ν) is a suitable weighted little BMO space.
We also simplify the proof of the known first order case.

1. INTRODUCTION

We recently developed in [23] a lot of theory for general bilinear bi-parameter singular
integrals using modern dyadic analysis – in particular, we proved various bilinear bi-
parameter commutator estimates. This lead us to discover an improved general principle
for approaching bi-parameter commutator estimates of dyadic model operators. In this
paper we use our method to give an efficient proof of Bloom type inequalities for iterated
commutators of bi-parameter singular integrals. Our objective is to offer a proof with a
very transparent structure. The iterated result is new in the bi-parameter setting, and its
proof benefits greatly from this structure. Our proof of the first order case is short.

With a Bloom type inequality we understand the following. Given some operator Ab,
the definition of which depends naturally on some function b, we seek for a two-weight
estimate

‖Ab‖Lp(µ)→Lp(λ) . ‖b‖BMO(ν),

where p ∈ (1,∞), µ, λ ∈ Ap, ν := µ1/pλ−1/p, and BMO(ν) is some suitable weighted
BMO space. Usually Ab is some commutator, like [b, T ]f := bTf − T (bf), where T is a
singular integral operator. Bloom [2] achieved such an inequality for T = H – the Hilbert
transform. Holmes–Lacey–Wick [12, 13] gave a modern proof and generalised Bloom’s
result to the case of a general (one-parameter) Calderón–Zygmund operator. The iter-
ated case is by Holmes–Wick [15] (see also Hytönen [16] for a proof via the Cauchy
integral trick). An improved iterated case is by Lerner–Ombrosi–Rivera-Ríos [21]: in
[15, 16] there is some single b ∈ BMO∩BMO(ν), while in [21] the iteration is taken using
b ∈ BMO(ν1/k) ⊃ BMO∩BMO(ν) (see also the related paper [11] by García–Cuerva,
Harboure, Segovia and Torrea). In [21] it is said that it seems that their bound cannot
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be obtained by a simple inductive argument. Some multilinear (one-parameter) Bloom
type inequalities are considered by Kunwar–Ou [18]. Commutator estimates are in gen-
eral very important and widely studied – for some other very recent references see e.g.
Hytönen [17] and Lerner–Ombrosi–Rivera-Ríos [20].

A model of a bi-parameter singular integral operator in Rn × Rm is T1 ⊗ T2, where T1

and T2 are usual singular integrals in Rn and Rm, respectively. The general definition of
a bi-parameter singular integral T requires that 〈Tf1, f2〉, fi = f1

i ⊗ f2
i , can be written

using different kernel representations depending on whether

(1) spt f1
1 ∩ spt f1

2 = ∅ and spt f2
1 ∩ spt f2

2 = ∅,
(2) spt f1

1 ∩ spt f1
2 = ∅ or

(3) spt f2
1 ∩ spt f2

2 = ∅.

In the first case we have a so-called full kernel representation, while in cases 2 and 3
a partial kernel representations holds in Rn or Rm, respectively. The bi-parameter rep-
resentation theorem [24] by one of us has enabled the development of deep commuta-
tor estimates also in the bi-parameter setting. The representation holds under natural
T1 conditions involving the product BMO space of Chang and Fefferman [3] and some
weak testing conditions. It allows to reduce the commutator estimates of singular in-
tegrals to those of model operators U , where U is a so-called bi-parameter shift, partial
paraproduct or full paraproduct. We will only need these model operators in this paper
and they are recalled in Section 4. As the somewhat lengthy kernel estimates and testing
conditions of T are not explicitly needed here, we refer to [24] for the remaining details.

Using the dyadic representation theorem Ou, Petermichl and Strouse proved in [25]
that [b, T ] : L2(Rn+m) → L2(Rn+m), when T is a paraproduct free bi-parameter singular
integral and b is a little BMO function. This is the important base case for more compli-
cated multi-parameter commutator estimates involving product BMO and iterated com-
mutators of the form [T1, [b, T2]] – see again [25] and Dalenc–Ou [7]. For the earlier deep
commutator lower bounds in the Hilbert and Riesz settings see Ferguson–Lacey [10] and
Lacey–Petermichl–Pipher–Wick [19]. The paper [25] was eventually generalised to con-
cern all bi-parameter singular integrals satisfying T1 conditions by Holmes–Petermichl–
Wick [14]. In fact, [14] proves much more: Bloom’s inequality in the bi-parameter setting.
The multi-parameter commutator scene is again very active, see also e.g. Duong–Li–
Ou–Pipher–Wick [8], which is a very recent paper concerning commutators of multi-
parameter flag singular integrals.

In [23] we explain that the presence of non-cancellative Haar functions h0
I in many

of the bi-parameter model operators seem to have caused a lot of technical troubles in
previous bi-parameter commutator estimates. Our guideline is to expand bf using bi-
parameter martingales in 〈bf, hI ⊗ hJ〉, using one-parameter martingales in 〈bf, h0

I ⊗ hJ〉
(or 〈bf, hI ⊗ h0

J〉), and not to expand at all in 〈bf, h0
I ⊗ h0

J〉. Moreover, when a non-
cancellative Haar function appears a suitable average of b is added and subtracted. See
Section 3 for the general details and e.g. (4.7) for an example of the resulting simple
decomposition. In [14] everything was always reduced to a so called remainder term,
which essentially entails expanding bf in the bi-parameter sense in all of the above situ-
ations. However, this remainder term has a particularly nice structure only when there
are no non-cancellative Haar functions (the shift case) – otherwise it can lead to some
difficult tail terms.
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In this paper we want to use the above decomposition idea from [23] and showcase
how it simplifies things in the linear bi-parameter setting. The Bloom setting is demand-
ing, but the proof framework adapts nicely even to this generality. Our treatment of
first order commutators is very different in many ways compared to [14] – that is, the
simplifications in the decomposition itself, which are described above, are not the only
difference – we also estimate differently. We exploit the known one-weight boundedness
of the model operators even more: most terms arising from our new decomposition can
be estimated directly by combining the weighted boundedness of the model operators
and some Bloom type estimates of appropriate auxiliary operators, such as,

f 7→ sup
R

1R
|R|

ˆ
R
|b− 〈b〉R||f |,

whereR = I×J is a dyadic rectangle. The bounds for this maximal function presented in
Proposition 4.13 rely on an interesting estimate of Fefferman [9] concerning the maximal
function f 7→ supR 1R〈|f |〉λR, 〈f〉λR := λ(R)−1

´
R f dλ, defined using an A∞-weight λ (see

also Appendix B). Modern sparse domination methods are also useful in some parts of
the proof – we use such estimates from [20] and [22, 23]. For example, a certain special
term U b associated to a model operator U and the commuting function b needs to be
estimated directly. The estimate (4.11) that follows from sparse domination techniques is
very effective for this.

We also can, for the first time, prove a Bloom type inequality for iterated commutators
of bi-parameter singular integrals. Our main theorem is:

1.1. Theorem. Let T be a bi-parameter singular integral satisfying the T1 type assumptions of
the dyadic representation theorem [24]. Let also p ∈ (1,∞), µ, λ ∈ Ap and ν := µ1/pλ−1/p.
Then we have

‖[b, T ]‖Lp(µ)→Lp(λ) .[µ]Ap ,[λ]Ap
‖b‖bmo(ν)

and, more generally,

‖[bk, · · · [b2, [b1, T ]] · · · ]‖Lp(µ)→Lp(λ) .[µ]Ap ,[λ]Ap

k∏
i=1

‖bi‖bmo(νθi ),

where θi ∈ [0, 1] and
∑k

i=1 θi = 1. Here Ap stands for the bi-parameter weights in Rn×Rm and
bmo(ν) is a suitable weighted little BMO space.

1.2. Remark. In the proof of the iterated commutator estimate, we will only prove the
second order case, since the proof structure is such that it is clear how to continue the
iteration.

Notice also that choosing b1 = · · · = bk = b and θ1 = · · · = θk = 1/k we get a
bi-parameter analog of [21], while choosing θ1 = 1 (and the rest zero) we get analogs
of [15, 16]. However, the first is the better choice as bmo(ν1/k) ⊃ bmo∩bmo(ν). Indeed,
similarly as in the one-parameter case [21], this is seen by using that 〈ν〉θR .[ν]A2

〈νθ〉R for
all θ ∈ (0, 1) and rectangles R (this estimate follows from Theorem 2.1 in [5] by iteration).

We also mention that some experts may find Appendix A interesting: it proves that
little BMO is contained in the product BMO – even in the weighted situation – using only
relatively elementary tools. We confess that we were only previously aware of a proof
of this in the unweighted situation, and that proof depended on the deep commutator
result of Ferguson–Lacey [10]. This weighted result is mentioned in [14] without proof.
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2. DEFINITIONS AND PRELIMINARIES

2.1. Basic notation. We denote A . B if A ≤ CB for some constant C that can depend
on the dimension of the underlying spaces, on integration exponents, and on various
other constants appearing in the assumptions. We denote A ∼ B if B . A . B.

We work in the bi-parameter setting in the product space Rn+m. In such a context
x = (x1, x2) with x1 ∈ Rn and x2 ∈ Rm. We often take integral pairings with respect to
one of the two variables only: If f : Rn+m → C and h : Rn → C, then 〈f, h〉1 : Rm → C is
defined by

〈f, h〉1(x2) =

ˆ
Rn
f(y1, x2)h(y1) dy1.

2.2. Dyadic notation, Haar functions and martingale differences. We denote a dyadic
grid in Rn by Dn and a dyadic grid in Rm by Dm. If I ∈ Dn, then I(k) denotes the
unique dyadic cube S ∈ Dn so that I ⊂ S and `(S) = 2k`(I). Here `(I) stands for side
length. Also, ch(I) denotes the dyadic children of I , i.e., I ′ ∈ ch(I) if I ′ ∈ Dn, I ′ ⊂ I and
`(I ′) = `(I)/2. We sometimes write D = Dn ×Dm.

When I ∈ Dn we denote by hI a cancellative L2 normalised Haar function. This
means the following. Writing I = I1 × · · · × In we can define the Haar function hηI ,
η = (η1, . . . , ηn) ∈ {0, 1}n, by setting

hηI = hη1I1 ⊗ · · · ⊗ h
ηn
In
,

where h0
Ii

= |Ii|−1/21Ii and h1
Ii

= |Ii|−1/2(1Ii,l − 1Ii,r) for every i = 1, . . . , n. Here Ii,l
and Ii,r are the left and right halves of the interval Ii respectively. The reader should
carefully notice that h0

I is the non-cancellative Haar function for us and that in some
other papers a different convention is used. If η ∈ {0, 1}n \ {0} the Haar function is
cancellative:

´
hηI = 0. We usually suppress the presence of η and simply write hI for

some hηI , η ∈ {0, 1}n \ {0}. Then hIhI can stand for hη1I h
η2
I , but we always treat such a

product as a non-cancellative function (which it is in the worst case scenario η1 = η2).
For I ∈ Dn and a locally integrable function f : Rn → C, we define the martingale

difference
∆If =

∑
I′∈ch(I)

[〈
f
〉
I′
−
〈
f
〉
I

]
1I′ .

Here
〈
f
〉
I

= 1
|I|
´
I f . We also write EIf =

〈
f
〉
I
1I . Now, we have ∆If =

∑
η 6=0〈f, h

η
I 〉h

η
I ,

or suppressing the η summation, ∆If = 〈f, hI〉hI , where 〈f, hI〉 =
´
fhI . A martingale

block is defined by

∆K,if =
∑
I∈Dn
I(i)=K

∆If, K ∈ Dn.

Next, we define bi-parameter martingale differences. Let f : Rn × Rm → C be locally
integrable. Let I ∈ Dn and J ∈ Dm. We define the martingale difference

∆1
If : Rn+m → C,∆1

If(x) := ∆I(f(·, x2))(x1).

Define ∆2
Jf analogously, and also define E1

I and E2
J similarly. We set

∆I×Jf : Rn+m → C,∆I×Jf(x) = ∆1
I(∆

2
Jf)(x) = ∆2

J(∆1
If)(x).
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Notice that ∆1
If = hI ⊗ 〈f, hI〉1, ∆2

Jf = 〈f, hJ〉2 ⊗ hJ and ∆I×Jf = 〈f, hI ⊗ hJ〉hI ⊗ hJ
(suppressing the finite η summations). Martingale blocks are defined in the natural way

∆i,j
K×V f =

∑
I : I(i)=K

∑
J : J(j)=V

∆I×Jf = ∆1
K,i(∆

2
V,jf) = ∆2

V,j(∆
1
K,if).

2.3. Weights. A weight w(x1, x2) (i.e. a locally integrable a.e. positive function) belongs
to bi-parameter Ap(Rn × Rm), 1 < p <∞, if

[w]Ap(Rn×Rm) := sup
R

〈
w
〉
R

〈
w1−p′〉p−1

R
<∞,

where the supremum is taken over R = I × J , where I ⊂ Rn and J ⊂ Rm are cubes with
sides parallel to the axes (we simply call such R rectangles). Here 1/p + 1/p′ = 1, i.e., p′

is the dual exponent of p. We have

[w]Ap(Rn×Rm) <∞ iff max
(

ess sup
x1∈Rn

[w(x1, ·)]Ap(Rm), ess sup
x2∈Rm

[w(·, x2)]Ap(Rn)

)
<∞,

and that max
(

ess supx1∈Rn [w(x1, ·)]Ap(Rm), ess supx2∈Rm [w(·, x2)]Ap(Rn)

)
≤ [w]Ap(Rn×Rm),

while the constant [w]Ap is dominated by the maximum to some power. Of course,
Ap(Rn) is defined similarly as Ap(Rn × Rm) – just take the supremum over cubes Q.
For the basic theory of bi-parameter weights consult e.g. [14].

Also, recall that w ∈ A∞(Rn) if

[w]A∞(Rn) = sup
Q

( 1

|Q|

ˆ
Q
w
)

exp
( 1

|Q|

ˆ
Q

logw−1
)
<∞,

where the supremum is taken over all the cubes Q ⊂ Rn. We will use that Ap ⊂ A∞, and
also some estimates that are valid for A∞ weights.

2.4. Maximal functions and standard estimates. Given f : Rn+m → C and g : Rn → C
we denote the dyadic maximal functions by

MDng(x) := sup
I∈Dn

1I(x)

|I|

ˆ
I
|g(y)| dy

and

MDn,Dmf(x1, x2) := sup
R∈Dn×Dm

1R(x1, x2)

|R|

¨
R
|f(y1, y2)|dy1 dy2.

We also set M1
Dnf(x1, x2) = MDn(f(·, x2))(x1). The operator M2

Dm is defined similarly.
We record the following standard estimates, which are used repeatedly below.

2.1. Lemma. For p ∈ (1,∞) and w ∈ Ap(Rn × Rm) the weighted square function estimates

‖f‖Lp(w) ∼[w]Ap(Rn×Rm)

∥∥∥( ∑
I∈Dn
J∈Dm

|∆I×Jf |2
)1/2∥∥∥

Lp(w)

∼[w]Ap(Rn×Rm)

∥∥∥( ∑
I∈Dn

|∆1
If |2

)1/2∥∥∥
Lp(w)

∼[w]Ap(Rn×Rm)

∥∥∥( ∑
J∈Dm

|∆2
Jf |2

)1/2∥∥∥
Lp(w)

hold. Moreover, for p, s ∈ (1,∞) we have the Fefferman–Stein inequality∥∥∥(∑
j

|Mfj |s
)1/s∥∥∥

Lp(w)
≤ C([w]Ap)

∥∥∥(∑
j

|fj |s
)1/s∥∥∥

Lp(w)
.
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Here M can e.g. be MDn , M1
Dn or MDn,Dm . Finally, we have

‖ϕ1
Dn,Dmf‖Lp(w) ∼[w]Ap

∥∥∥( ∑
I∈Dn

1I
|I|
⊗ [MDm〈f, hI〉1]2

)1/2∥∥∥
Lp(w)

.[w]Ap
‖f‖Lp(w),

where
ϕ1
Dn,Dmf :=

∑
I∈Dn

hI ⊗MDm〈f, hI〉1.

The function ϕ2
Dn,Dmf is defined in the symmetric way and satisfies the same estimates.

One easy way to show such estimates is to reduce to p = 2 via standard extrapolation.
When p = 2 it is especially easy to use one-parameter results iteratively. See e.g. [4, 6] for
one-parameter square function results and their history.

If an average is with respect to a different measure than the Lebesgue measure we can
e.g. write 〈f〉λR := 1

λ(R)

´
R f dλ, and similarly we can write MDn,Dm,λf = supR 1R〈|f |〉λR.

2.5. BMO spaces. Givenw ∈ A2(Rn) we say that a locally integrable function b : Rn → C
belongs to the weighted dyadic BMO space BMODn(w) if

‖b‖BMODn (w) := sup
I∈Dn

1

w(I)

ˆ
I
|b− 〈b〉I | <∞.

The space BMO(w) can be defined using the norm defined by the supremum over all
dyadic grids of the above dyadic norms.

Givenw ∈ A2(Rn×Rm) we say that a locally integrable function b : Rn+m → C belongs
to the weighted dyadic little BMO space bmoDn,Dm(w) if

‖b‖bmoDn,Dm (w) := sup
R∈Dn×Dm

1

w(R)

ˆ
R
|b− 〈b〉R| <∞.

Again, the space bmo(w) is defined via the supremum of the dyadic norms. We have

‖b‖bmoDn,Dm (w) ∼ max
(

ess sup
x1∈Rn

‖b(x1, ·)‖BMODm (w(x1,·)), ess sup
x2∈Rm

‖b(·, x2)‖BMODn (w(·,x2))

)
.

Moreover, we have the two-weight John–Nirenberg property

(2.2) ‖b‖bmoDn,Dm (ν) ∼[µ]Ap ,[λ]Ap
sup

R∈Dn×Dm

( 1

µ(R)

ˆ
R
|b− 〈b〉R|pλ

)1/p
,

if p ∈ (1,∞), µ, λ ∈ Ap and ν := µ1/pλ−1/p. Notice that here ν ∈ A2. For these see [14].
Finally, we have the product BMO space. Given w ∈ A2(Rn × Rm) set

‖b‖
BMOD

n,Dm
prod (w)

:= sup
Ω

( 1

w(Ω)

∑
I∈Dn,J∈Dm
I×J⊂Ω

|〈b, hI ⊗ hJ〉|2〈w〉−1
I×J

)1/2
,

where the supremum is taken over those sets Ω ⊂ Rn+m such that |Ω| < ∞ and such
that for every x ∈ Ω there exist I ∈ Dn, J ∈ Dm so that x ∈ I × J ⊂ Ω. The non-dyadic
product BMO space can be defined using the norm defined by the supremum over all
dyadic grids of the above dyadic norms.

It is stated in [14] (without proof or reference) that bmo(w) ⊂ BMOprod(w), w ∈ A2.
This embedding ‖b‖

BMOD
n,Dm

prod (w)
.[w]A2

‖b‖bmoDn,Dm (w) is used in the main proof only
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via the fact that it implies that (3.3) also holds for bmo(w) functions. We give a proof of
this result in Appendix A.

2.6. Commutators. We briefly discuss one way to understand how the commutators are
defined, and how all the pairings and expansions appearing in our proof can be seen
to be well defined. For example, we discuss the second order case. Let bi ∈ bmo(νθi),
i = 1, 2, be given, where ν = µ1/pλ−1/p, µ, λ ∈ Ap, p ∈ (1,∞). Define

F = F(b1, b2) =
∞⋃
k=1

{f : Rn+m → R : spt f ⊂ B(0, k) ∩ {|b1|, |b2| ≤ k} and |f | ≤ k}.

For f1, f2 ∈ F the pairing 〈[b2, [b1, T ]]f1, f2〉 is well defined (if T is e.g. a singular integral
satisfying the assumptions of the representation theorem) and F is dense in Lp(µ) and
Lp
′
(λ1−p′). Moreover, for some k we can replace bi by bi,k = max(min(bi, k),−k). Notice

that ‖bi,k‖bmo(νθi ) . ‖bi‖bmo(νθi ). This can be seen by using identities like max(c, d) =

(c+ d+ |c− d|)/2, and showing that h ∈ bmo(ν) implies |h| ∈ bmo(ν).
These considerations imply that below we may assume that the little BMO functions

b1, b2 are bounded and f1, f2 are bounded and compactly supported, which makes ev-
erything legitimate.

3. MARTINGALE DIFFERENCE EXPANSIONS OF PRODUCTS

We recall from [23] our modified strategy of expanding commutators. A product bf
paired with Haar functions is expanded in the bi-parameter fashion only if both of the
Haar functions are cancellative. In a mixed situation we expand only in Rn or Rm, and
in the remaining fully non-cancellative situation we do not expand at all. Our protocol
also entails the following: when pairing with a non-cancellative Haar function we add
and subtract a suitable average of b.

Let Dn and Dm be some fixed dyadic grids in Rn and Rm, respectively, and write
D = Dn ×Dm. In what follows we sum over I ∈ Dn and J ∈ Dm.

Paraproduct operators. We define certain standard paraproduct operators:

A1(b, f) =
∑
I,J

∆I×Jb∆I×Jf, A2(b, f) =
∑
I,J

∆I×JbE
1
I∆2

Jf,

A3(b, f) =
∑
I,J

∆I×Jb∆
1
IE

2
Jf, A4(b, f) =

∑
I,J

∆I×Jb
〈
f
〉
I×J ,

and

A5(b, f) =
∑
I,J

E1
I∆2

Jb∆I×Jf, A6(b, f) =
∑
I,J

E1
I∆2

Jb∆
1
IE

2
Jf,

A7(b, f) =
∑
I,J

∆1
IE

2
Jb∆I×Jf, A8(b, f) =

∑
I,J

∆1
IE

2
JbE

1
I∆2

Jf.

The operators are grouped into two collections, since they are handled differently (using
product BMO or little BMO estimates, respectively).

We also define

a1
1(b, f) =

∑
I

∆1
Ib∆

1
If and a1

2(b, f) =
∑
I

∆1
IbE

1
I f.
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The operators a2
1(b, f) and a2

2(b, f) are defined analogously.

3.1. Lemma. Let πb be Ai(b, ·), i = 1, . . . , 8, or a1
j (b, ·), a2

j (b, ·), j = 1, 2. Suppose b ∈ bmo(ν),

where ν = µ
1
pλ
− 1
p , µ, λ ∈ Ap and p ∈ (1,∞). Then

‖πb‖Lp(µ)→Lp(λ) .[µ]Ap ,[λ]Ap
‖b‖bmo(ν).

3.2. Remark. Notice that ν = (λ1−p′)1/p′(µ1−p′)−1/p′ , where λ1−p′ , µ1−p′ ∈ Ap′ , so that the
natural dual statement concerning ‖πb‖Lp′ (λ1−p′ )→Lp′ (µ1−p′ ) follows.

Proof of Lemma 3.1. The operators Ai(b, ·) (but in a somewhat different form) are already
discussed in [14]. To aid the reader we note that the proofs essentially write themselves
if one knows certain weighted H1-BMO type duality estimates. For i = 1, . . . , 4 we use

(3.3)
∑
I,J

|〈b, hI ⊗ hJ〉||AIJ | .[ν]A2
‖b‖

BMOD
n,Dm

prod (ν)

∥∥∥(∑
I,J

|AIJ |2
1I×J
|I × J |

)1/2∥∥∥
L1(ν)

and the fact that bmoDn,Dm(ν) ⊂ BMOD
n,Dm

prod (ν). A proof of (3.3) is recorded in [14] (but
even this weighted version was well-known according to them). For i = 5, . . . , 8 we may
use the one parameter analog of the estimate (3.3) in various ways – e.g. through the fact
that it implies (as [〈ν〉I,1]A2 ≤ [ν]A2 and ‖〈b〉I,1‖BMO(〈ν〉I,1) ≤ ‖b‖bmo(ν)) that∑

J

∣∣∣〈b, 1I
|I|
⊗ hJ

〉∣∣∣|AIJ | .[ν]A2
‖b‖bmoDn,Dm (ν)

∥∥∥(∑
J

|AIJ |2
1J
|J |

)1/2∥∥∥
L1(〈ν〉I,1)

.

Of course, the operators a1
j (b, ·), a2

j (b, ·), j = 1, 2, can also be handled with the one pa-
rameter analog of (3.3). �

For I0 ∈ Dn and J0 ∈ Dm we will now introduce our expansions of 〈bf, hI0 ⊗ hJ0〉,〈
bf, hI0 ⊗

1J0
|J0|
〉

and 〈bf〉I0×J0 .

Expansion of 〈bf, hI0 × hJ0〉. There holds

1I0×J0b =
∑

I1×J1∈D
I1×J1⊂I0×J0

∆I1×J1b+
∑

J1∈Dm
J1⊂J0

E1
I0∆2

J1b+
∑
I1∈Dn
I1⊂I0

∆1
I1E

2
J0b+ EI0×J0b.

Let us denote these terms by Ij , j = 1, 2, 3, 4, in the respective order. We have the corre-
sponding decomposition of f , whose terms we denote by IIi, i = 1, 2, 3, 4. Calculating
carefully the pairings 〈IjIIi, hI0 ⊗ hJ0〉we see that

(3.4) 〈bf, hI0 ⊗ hJ0〉 =

8∑
i=1

〈Ai(b, f), hI0 ⊗ hJ0〉+ 〈b〉I0×J0〈f, hI0 ⊗ hJ0〉.

Expansion of
〈
bf, hI0 ⊗

1J0
|J0|
〉
. This time we write 1I0b =

∑
I1∈Dn
I1⊂I0

∆1
I1
b+E1

I0
b, and similarly

for f . Calculating 〈bf, hI0〉1 we see that〈
bf, hI0 ⊗

1J0
|J0|

〉
=

2∑
i=1

〈
a1
i (b, f), hI0 ⊗

1J0
|J0|

〉
+
〈
(〈b〉I0,1 − 〈b〉I0×J0)〈f, hI0〉1

〉
J0

+ 〈b〉I0×J0
〈
f, hI0 ⊗

1J0
|J0|

〉
.

(3.5)
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When we have 〈bf〉I0×J0 we do not expand at all:

(3.6) 〈bf〉I0×J0 = 〈(b− 〈b〉I0×J0)f〉I0×J0 + 〈b〉I0×J0〈f〉I0×J0 .

All of our commutators are simply decomposed using (3.4), (3.5) (and its symmetric
form) and (3.6) whenever the relevant pairings/averages appear.

4. FIRST ORDER COMMUTATOR

Let U = Uk,v = Uk,vDn,Dm , k = (ki), v = (vi), 0 ≤ ki ∈ Z and 0 ≤ vi ∈ Z, i = 1, 2, be a
dyadic bi-parameter operator (defined using fixed dyadic grids Dn and Dm) such that

〈Uf1, f2〉 =
∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(k1)
1 =I

(k2)
2 =K

∑
J1,J2∈Dm

J
(v1)
1 =J

(v2)
2 =V

aK,V,(Ii),(Jj)〈f1, h̃I1 ⊗ h̃J1〉〈f2, h̃I2 ⊗ h̃J2〉,

where aK,V,(Ii),(Jj) are scalars and for all i = 1, 2 we have h̃Ii = hIi (a cancellative Haar
function) for all Ii ∈ Dn or h̃Ii = 1Ii/|Ii| for all Ii ∈ Dn, and similarly with the functions
h̃Jj . To prove a Bloom type inequality for [b, T ], where T is a bi-parameter singular
integral, it is enough to prove a Bloom type inequality for [b, U ], where U can be a so
called bi-parameter shift, partial paraproduct or a full paraproduct (we will recall what
these mean later). This is because of the dyadic bi-parameter representation theorem [24]
– one only has to be maintain a polynomial dependence of k1, k2, v1, v2.

The basic structure is the following.

(1) The shift case: We have

〈f1, h̃I1 ⊗ h̃J1〉〈f2, h̃I2 ⊗ h̃J2〉 = 〈f1, hI1 ⊗ hJ1〉〈f2, hI2 ⊗ hJ2〉.

(2) The partial paraproduct case: We have k1 = k2 = 0 and

〈f1, h̃I1 ⊗ h̃J1〉〈f2, h̃I2 ⊗ h̃J2〉 =
〈
f1,

1K
|K|
⊗ hJ1

〉
〈f2, hK ⊗ hJ2〉

or the symmetric case, or we have v1 = v2 = 0 and

〈f1, h̃I1 ⊗ h̃J1〉〈f2, h̃I2 ⊗ h̃J2〉 =
〈
f1, hI1 ⊗

1V
|V |

〉
〈f2, hI2 ⊗ hV 〉

or the symmetric case.
(3) The full paraproduct case: We have k1 = k2 = v1 = v2 = 0 and

〈f1, h̃I1 ⊗ h̃J1〉〈f2, h̃I2 ⊗ h̃J2〉 = 〈f1〉K×V 〈f2, hK ⊗ hV 〉

or the symmetric case, or we have k1 = k2 = v1 = v2 = 0 and

〈f1, h̃I1 ⊗ h̃J1〉〈f2, h̃I2 ⊗ h̃J2〉 =
〈
f1, hK ⊗

1V
|V |

〉〈
f2,

1K
|K|
⊗ hV

〉
or the symmetric case.



10 KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

Most terms arising from our decomposition of [b, U ] can in fact be handled using the fact
that all the model operators satisfy for all 1 < p <∞ and w ∈ Ap(Rn × Rm) that∑

K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(ki)
i =K

∑
J1,J2∈Dm

J
(vj)

j =V

∣∣aK,V,(Ii),(Ji)〈f1, h̃I1⊗h̃J1〉〈f2, h̃I2 ⊗ h̃J2〉
∣∣

. C([w]Ap)‖f1‖Lp(w)‖f2‖Lp′ (w1−p′ ).

(4.1)

Given some suitable BMO function b let us also define U b via

〈U bf1, f2〉 =
∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(ki)
i =K

∑
J1,J2∈Dm

J
(vj)

j =V

aK,V,(Ii),(Jj)[〈b〉I2×J2 − 〈b〉I1×J1 ]

× 〈f1, h̃I1 ⊗ h̃J1〉〈f2, h̃I2 ⊗ h̃J2〉.

In the unweighted (or one weight case) the boundedness of U b can be reduced to (4.1)
via the simple observation that

|〈b〉I2×J2 − 〈b〉I1×J1 | . ‖b‖bmo(Rn×Rm) max(ki, vi).

However, if we want to prove a Bloom type inequality for U b, and this is key for the
Bloom type inequality for [b, U ], we have to run a harder adaptation of the proof of (4.1).
This requires recalling more carefully what the assumptions about the coefficients aK,V,...
are in each case. Notice also that U b = 0 when k = v = 0 i.e. U b does not arise in the full
paraproduct case. Moreover, the Bloom type inequality for U b is much harder when U
is a partial paraproduct compared to the case that U is a shift (we use sparse bounds of
bilinear paraproducts to handle the partial paraproduct case).

Despite having to deal with U b separately, it is extremely convenient to blackbox (4.1).
Such a weighted bound for all model operators was first recorded in [14]. The proof is
essentially the same with or without weights (in the weighted case one just uses weighted
versions of square function and maximal function bounds at the end). We note that a
reader who is not familiar with the fundamental basic bound (4.1) can essentially read
the proof from the current paper also. Indeed, for full paraproducts one can consult
Lemma 3.1, and for the other model operators the bounds proved for U b are harder, and
in fact an easier version of those arguments can also be used to get (4.1).

4.1. The shift case. We show that if U = Uk,v is a shift then

|〈[b, U ]f1, f2〉| .[µ]Ap ,[λ]Ap
‖b‖bmo(ν)(1 + max(ki, vi))‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ).

Using our general decomposition philosophy from Section 3 we see that

〈[b, U ]f1, f2〉 =

8∑
i=1

〈Uf1, Ai(b, f2)〉 −
8∑
i=1

〈U(Ai(b, f1)), f2〉+ 〈U bf1, f2〉.(4.2)

The first term is easy using Lemma 3.1 and (4.1) as

|〈Uf1, Ai(b, f2)〉| ≤ ‖Uf1‖Lp(µ)‖Ai(b, f2)‖Lp′ (µ1−p′ )
.[µ]Ap ,[λ]Ap

‖b‖bmo(ν)‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ),

and the second one is handled similarly.
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To handle U b we begin by splitting

〈b〉I2×J2 − 〈b〉I1×J1 = [〈b〉I2×J2 − 〈b〉K×J2 ] + [〈b〉K×J2 − 〈b〉K×V ]

+ [〈b〉K×V − 〈b〉K×J1 ] + [〈b〉K×J1 − 〈b〉I1×J1 ].
(4.3)

The resulting four terms are essentially symmetric, so we only deal with the first one.
There holds that

(4.4) |〈b〉I2×J2 − 〈b〉K×J2 | . ‖b‖bmo(ν)

∑
L∈Dn
I2(L⊂K

ν(L× J2)

|L× J2|
.

Using this we see that it is enough to fix one l ∈ {1, . . . , k2} and estimate the term∑
K∈Dn
V ∈Dm

∑
L∈Dn

L(k2−l)=K

∑
J2∈Dm

J
(v2)
2 =V

ν(L× J2)

|L× J2|
∑

I1,I2∈Dn

I
(k1)
1 =K

I
(l)
2 =L

∑
J1∈Dm

J
(v1)
1 =V

∣∣aK,V,(Ii),(Ji)〈f1, hI1 ⊗ hJ1〉〈f2, hI2 ⊗ hJ2〉
∣∣.(4.5)

Now we use the fact that

|aK,V,(Ii),(Ji)| ≤
|I1|1/2|I2|1/2

|K|
|J1|1/2|J2|1/2

|V |
,

which implies that

ν(L× J2)

|L× J2|
∑

I1,I2∈Dn

I
(k1)
1 =K

I
(l)
2 =L

∑
J1∈Dm

J
(v1)
1 =V

∣∣aK,V,(Ii),(Ji)〈f1, hI1 ⊗ hJ1〉〈f2, hI2 ⊗ hJ2〉
∣∣

≤ ν(L× J2)〈|∆k1,v1
K×V f1|〉K×V 〈|∆k2,v2

K×V f2|〉L×J2

≤
¨

1L×J2MDn,Dm(∆k1,v1
K×V f1)MDn,Dm(∆k2,v2

K×V f2)ν.

Using this we see that (4.5) can be dominated by∑
K∈Dn
V ∈Dm

¨
MDn,Dm(∆k1,v1

K×V f1)MDn,Dm(∆k2,v2
K×V f2)ν

≤
∥∥∥( ∑

K∈Dn
V ∈Dm

(MDn,Dm∆k1,v1
K×V f1)2

)1/2∥∥∥
Lp(µ)

∥∥∥( ∑
K∈Dn
V ∈Dm

(MDn,Dm∆k2,v2
K×V f2)2

)1/2∥∥∥
Lp′ (λ1−p′ )

.[µ]Ap ,[λ]Ap
‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ),

where in the second step we used that ν = µ1/pλ−1/p. We are done with the shifts.
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4.2. The partial paraproduct case. We now deal with the partial paraproducts, and we
choose the symmetry

(4.6) 〈Uf1, f2〉 =
∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(k1)
1 =I

(k2)
2 =K

aK,V,(Ii)

〈
f1, hI1 ⊗

1V
|V |

〉
〈f2, hI2 ⊗ hV 〉.

We will show that

|〈[b, U ]f1, f2〉| .[µ]Ap ,[λ]Ap
‖b‖bmo(ν)(1 + max(k1, k2))‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ).

Using our general decomposition philosophy from Section 3 we see that

〈[b, U ]f1, f2〉 =
8∑
i=1

〈Uf1, Ai(b, f2)〉 −
2∑
i=1

〈U(a1
i (b, f1)), f2〉+ 〈U bf1, f2〉

−
∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(k1)
1 =I

(k2)
2 =K

aK,V,(Ii)
〈
(〈b〉I1,1 −

〈
b〉I1×V )〈f1, hI1〉1

〉
V
〈f2, hI2 ⊗ hV 〉.

(4.7)

The first two terms are handled precisely as in the shift case. The last term is directly
under control using (4.1) and the following lemma.

4.8. Lemma. Let p ∈ (1,∞) and µ, λ ∈ Ap(Rn × Rm). Assume that b ∈ bmo(ν), where
ν = µ1/pλ−1/p. Let I ∈ Dn and J ∈ Dm. Then∣∣〈(〈b〉I,1 − 〈b〉I×J)〈f, hI〉1

〉
J

∣∣ .[ν]A2
‖b‖bmo(ν)

〈
ϕν,1Dn,Dmf, hI ⊗

1J
|J |

〉
,

where
ϕν,1Dn,Dmf =

∑
I∈Dn

hI ⊗MDm(〈f, hI〉1)〈ν〉I,1.

Moreover, we have
‖ϕν,1Dn,Dm‖Lp(µ)→Lp(λ) .[µ]Ap ,[λ]Ap

1.

Proof. We will use the one parameter estimate

1

|J |

ˆ
J
|b0 − 〈b0〉J ||g| . [w]A∞‖b0‖BMO(w)

1

|J |

ˆ
J
MDm(g)w.

Let us prove this. Using Lemma 5.1 in [20] we find a sparse family S = S(J, b) such that

(4.9) |b0 − 〈b0〉J |1J ≤ 2n+2
∑
Q∈S
Q⊂J

〈
|b0 − 〈b0〉Q|

〉
Q

1Q.

Therefore, we haveˆ
J
|b0 − 〈b0〉J ||g| .

∑
Q∈S
Q⊂J

〈
|b0 − 〈b0〉Q|

〉
Q

ˆ
Q
|g|

≤ ‖b0‖BMO(w)

∑
Q∈S
Q⊂J

〈
|g|
〉
Q
w(Q)
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≤ ‖b0‖BMO(w)

∑
Q∈S
Q⊂J

[
〈MDm(g)

1
2
〉w
Q

]2w(Q)

. [w]A∞‖b0‖BMO(w)

ˆ
J
MDm(g)w,

where in the last step we have used the Carleson embedding theorem (notice that Lebesgue
sparse implies w-Carleson).

Now, we have∣∣〈(〈b〉I,1 − 〈b〉I×J)〈f, hI〉1
〉
J

∣∣ . [〈ν〉I,1]A∞‖〈b〉I,1‖BMO(〈ν〉I,1)

〈
MDm(〈f, hI〉1)〈ν〉I,1

〉
J

= [〈ν〉I,1]A∞‖〈b〉I,1‖BMO(〈ν〉I,1)

〈
ϕν,1Dn,Dmf, hI ⊗

1J
|J |

〉
,

and then recall that [〈ν〉I,1]A2 ≤ [ν]A2 and ‖〈b〉I,1‖BMO(〈ν〉I,1) ≤ ‖b‖bmo(ν).
Next, we have

‖ϕν,1Dn,Dmf‖Lp(λ) ∼[λ]Ap

∥∥∥( ∑
I∈Dn

1I
|I|
⊗ [MDm(〈f, hI〉1)〈ν〉I,1]2

)1/2∥∥∥
Lp(λ)

.[λ]Ap

∥∥∥( ∑
I∈Dn

1I
|I|
⊗ [MDm〈f, hI〉1]2

)1/2
ν
∥∥∥
Lp(λ)

=
∥∥∥( ∑

I∈Dn

1I
|I|
⊗ [MDm〈f, hI〉1]2

)1/2∥∥∥
Lp(µ)

.[µ]Ap
‖f‖Lp(µ).

�

We now take care of the remaining U b term. This key term also arises in [14] where
it is actually omitted by saying that it goes similarly as a certain other term (which does
not arise at all in our decomposition). To handle this term we find it necessary to use
somewhat sophisticated tools via bilinear sparse domination.

Similarly as in the shift case it is enough to fix l ∈ {1, . . . , k1} and estimate the term∑
K∈Dn

∑
L∈Dn

L(k1−l)=K

ˆ
Rn

1L(x1)

|L|
∑

I1,I2∈Dn

I
(l)
1 =L

I
(k2)
2 =K∑

V ∈Dm

ˆ
Rm

1V (x2)

|V |

∣∣∣aK,V,(Ii)〈f1, hI1 ⊗
1V
|V |

〉
〈f2, hI2 ⊗ hV 〉

∣∣∣ν(x1, x2) dx2 dx1.

(4.10)

From the sparse domination of bilinear paraproducts (see e.g. [22]) we can deduce (see
Lemma 6.7 in [23]) that

ˆ
Rm

( ∑
V ∈Dm

∣∣aK,V,(Ii)〈〈f1, hI1〉1
〉
V
〈〈f2, hI2〉1, hV 〉

∣∣ 1V
|V |

)
ρ

.[ρ]A∞(Rm)

|I1|1/2|I2|1/2

|K|

ˆ
Rm

MDm(〈f1, hI1〉1)MDm(〈f2, hI2〉1)ρ.

(4.11)
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This requires knowing that we have supV0∈Dm
(

1
|V0|
∑

V ∈Dm
V⊂V0

|aK,V,(Ii)|2
)1/2

≤ |I1|
1/2|I2|1/2
|K| .

Recall the functionϕ1
Dn,Dm from Lemma 2.1 and then notice the identityMDm(〈f1, hI1〉1) =

〈ϕ1
Dn,Dmf1, hI1〉1. We now see that (4.10) can be dominated in the .[µ]Ap ,[λ]Ap

sense by∑
K∈Dn

∑
L∈Dn

L(k1−l)=K

¨
1L
|L|

∑
I1,I2∈Dn

I
(l)
1 =L

I
(k2)
2 =K

|I1|1/2|I2|1/2

|K|
〈ϕ1
Dn,Dmf1, hI1〉1〈ϕ1

Dn,Dmf2, hI2〉1ν

≤
∑
K∈Dn

∑
L∈Dn

L(k1−l)=K

¨
1L〈|∆1

K,k1ϕ
1
Dn,Dmf1|〉L,1〈|∆1

K,k2ϕ
1
Dn,Dmf2|〉K,1ν

≤
∑
K∈Dn

¨
M1
Dn∆1

K,k1ϕ
1
Dn,Dmf1 ·M1

Dn∆1
K,k2ϕ

1
Dn,Dmf2 · ν

≤
∥∥∥( ∑

K∈Dn
[M1
Dn∆1

K,k1ϕ
1
Dn,Dmf1]2

)1/2∥∥∥
Lp(µ)

×
∥∥∥( ∑

K∈Dn
[M1
Dn∆1

K,k2ϕ
1
Dn,Dmf2]2

)1/2∥∥∥
Lp′ (λ1−p′ )

.[µ]Ap ,[λ]Ap
‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ).

4.3. The full paraproduct case. Depending on the form of U (we have two genuinely
different symmetries here), we get different terms in the expansion (following Section 3)
of 〈[b, U ]f1, f2〉. However, after minor thought (recall also that U b = 0) the reader will
understand that the only type of term that we have not seen before is

(4.12)
∑
K∈Dn
V ∈Dm

aK,V
〈
(b− 〈b〉K×V )f1

〉
K×V 〈f2, hK ⊗ hV 〉.

To handle this via (4.1) we introduce the following maximal function:

M b
Dn,Dm(f) = sup

R

1R
|R|

ˆ
R
|b− 〈b〉R||f |,

where R = I × J ∈ Dn ×Dm.

4.13. Proposition. Let p ∈ (1,∞) and b ∈ bmo(ν), where µ, λ ∈ Ap and ν = µ1/pλ−1/p. Then
we have

‖M b
Dn,Dm‖Lp(µ)→Lp(λ) .[µ]Ap ,[λ]Ap

‖b‖bmo(ν).

Proof. There exists some 1 < q < p such that µ, λ ∈ Aq. Then Hölder’s inequality implies

that µ0 = µ
q
pλ

1− q
p ∈ Aq. Since µ

1
q

0 λ
− 1
q = ν, by the two-weight John-Nirenberg for little

BMO (2.2) we have for all x and R 3 x that

1

|R|

ˆ
R
|b− 〈b〉R||f | ≤

( 1

|R|

ˆ
R
|b− 〈b〉R|q

′
µ1−q′

0

) 1
q′
( 1

|R|

ˆ
R
|f |qµ0

) 1
q

.[µ]Ap ,[λ]Ap
‖b‖bmo(ν)

λ1−q′(R)
1
q′

|R|

(ˆ
R
|f |qµ0

) 1
q
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.[λ]Ap
‖b‖bmo(ν)

( 1

λ(R)

ˆ
R
|f |qµ0

) 1
q

≤ ‖b‖bmo(ν)MDn,Dm,λ(|f |qµ0λ
−1)(x)

1
q .

The claim now follows from the boundedness property MDn,Dm,λ : Lp/q(λ) → Lp/q(λ)

and the observation that (µ0λ
−1)

p
q λ = µ. The first mentioned fact is non-trivial as λ is

not of product form – but it has been proved by R. Fefferman in [9] using theA∞ property
of λ. For clarity we give a proof in our dyadic setting in Appendix B. �

Notice that ∣∣〈(b− 〈b〉K×V )f1

〉
K×V

∣∣ . 〈M b
Dn,Dmf1〉K×V

so that (4.1) gives that the absolute value of (4.12) can be dominated with

C([λ]Ap)‖M b
Dn,Dmf1‖Lp(λ)‖f2‖Lp′ (λ1−p′ ) .[µ]Ap ,[λ]Ap

‖b‖bmo(ν)‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ).

Here the last estimate used Lemma 4.13. We are done with the full paraproducts.

5. ITERATED COMMUTATORS

To study the Bloom type inequality for iterated commutators, we also need to consider
the commutators of general paraproduct operators that appear in Section 3.

5.1. Lemma. Let πb be Ai(b, ·), i = 1, · · · , 8 or a1
j (b, ·), a2

j (b, ·), j = 1, 2. Suppose b1 ∈
bmo(νθ1) and b2 ∈ bmo(νθ2), where ν = µ1/pλ−1/p, 0 ≤ θ1, θ2 ≤ 1, θ1 + θ2 = 1 and
µ, λ ∈ Ap. Then

‖[b2, πb1 ]‖Lp(µ)→Lp(λ) .[µ]Ap ,[λ]Ap
‖b1‖bmo(νθ1 )‖b2‖bmo(νθ2 ).

Proof. With our existing tools there is no essential difference in the proof for different
operators, and we e.g. choose πb1 = A5(b1, ·). We have

〈A5(b1, f1), f2〉 =
∑
I,J

〈
b1,

1I
|I|
⊗ hJ

〉
〈f1, hI ⊗ hJ〉〈f2, hI ⊗ hJhJ〉.

Using our decomposition philosophy (treating hJhJ as non-cancellative) we get

〈[b2,A5(b1, f1)], f2〉 =

2∑
i=1

〈A5(b1, f1), a1
i (b2, f2)〉 −

8∑
i=1

〈A5(b1, Ai(b2, f1)), f2〉

+
∑
I,J

〈
b1,

1I
|I|
⊗ hJ

〉
〈f1, hI ⊗ hJ〉

〈
(〈b2〉I,1 − 〈b2〉I×J)〈f2, hI〉1, hJhJ

〉
.

(5.2)

The first and second term are similar – we only deal with the second one. We begin with
the only reasonable step:

|〈A5(b1, Ai(b2, f1)), f2〉| ≤ ‖A5(b1, Ai(b2, f1))‖Lp(λ)‖f2‖Lp′ (λ1−p′ ).

We want to use the Bloom inequality for A5(b1, ·) with b1 ∈ bmo(νθ1). Thus, we write

νθ1 = (µθ1λ1−θ1)1/pλ−1/p, where µθ1λ1−θ1 , λ ∈ Ap,
and get

‖A5(b1, Ai(b2, f1))‖Lp(λ) .[µ]Ap ,[λ]Ap
‖b1‖bmo(νθ1 )‖Ai(b2, f1)‖Lp(µθ1λ1−θ1 ).
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Then we write

νθ2 = µ1/p(µθ1λ1−θ1)−1/p, where µ, µθ1λ1−θ1 ∈ Ap,
and similarly get

‖Ai(b2, f1)‖Lp(µθ1λ1−θ1 ) .[µ]Ap ,[λ]Ap
‖b2‖bmo(νθ2 )‖f1‖Lp(µ).

For the third term in (5.2) we begin with Lemma 4.8, which gives us that

|
〈
(〈b2〉I,1 − 〈b2〉I×J)〈f2, hI〉1, hJhJ

〉
| .[µ]Ap ,[λ]Ap

‖b2‖bmo(νθ2 )

〈
ϕν

θ2 ,1
Dn,Dmf2, hI ⊗

1J
|J |

〉
.

Then writing
νθ1 = µ1/p(µ1−θ1λθ1)−1/p, where µ, µ1−θ1λθ1 ∈ Ap,

we get (again using the known Bloom for A5(b1, ·)) that the absolute value of the third
term in (5.2) can be dominated in the .[µ]Ap ,[λ]Ap

sense by

‖b1‖bmo(νθ1 )‖f1‖Lp(µ)‖ϕ
νθ2 ,1
Dn,Dmf2‖Lp′ ((µ1−θ1λθ1 )1−p′ ).

Then using Lemma 4.8 together with the identity

νθ2 = (λ1−p′)1/p′((µ1−θ1λθ1)1−p′)−1/p′ , where λ1−p′ , (µ1−θ1λθ1)1−p′ ∈ Ap′ ,
we get

‖ϕν
θ2 ,1
Dn,Dmf2‖Lp′ ((µ1−θ1λθ1 )1−p′ ) . ‖f2‖Lp′ (λ1−p′ ).

We are done. �

5.1. The shift case. We show that if U = Uk,v is a shift then

|〈[b2,[b1, U ]]f1, f2〉|
.[µ]Ap ,[λ]Ap

‖b1‖bmo(νθ1 )‖b2‖bmo(νθ2 )(1 + max(ki, vi))
2‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ).

We recall Equation (4.2) with b = b1. In the iterated commutator 〈[b2, [b1, U ]]f1, f2〉 the
first term of (4.2) leads to the need to study

〈Uf1, Ai(b1, b2f2)〉 − 〈U(b2f1), Ai(b1, f2)〉,
which can be written (by adding and subtracting the obvious term) in the form

−〈Uf1, [b2, Ai(b1, ·)]f2〉+ 〈[b2, U ]f1, Ai(b1, f2)〉.
We have using (4.1) and Lemma 5.1 that

|〈Uf1, [b2, Ai(b1, ·)]f2〉| ≤ ‖Uf1‖Lp(µ)‖[b2, Ai(b1, ·)]f2‖Lp′ (µ1−p′ )
.[µ]Ap ,[λ]Ap

‖b1‖bmo(νθ1 )‖b2‖bmo(νθ2 )‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ).

On the other hand, using the known Bloom type inequality for the first order commutator
[b2, U ] and also forAi(b1, ·), we get arguing analogously as in the proof of Lemma 5.1 that

|〈[b2, U ]f1,Ai(b1, f2)〉|
.[µ]Ap ,[λ]Ap

‖b1‖bmo(νθ1 )‖b2‖bmo(νθ2 )(1 + max(ki, vi))‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ).

We have thus handled the contribution of the first term of (4.2) to 〈[b2, [b1, U ]]f1, f2〉. The
contribution of the second term of (4.2) to 〈[b2, [b1, U ]]f1, f2〉 is handled in the same way.

Therefore, we are only left with bounding the contribution of the third term of (4.2)
to 〈[b2, [b1, U ]]f1, f2〉, i.e. bounding 〈[b2, U b1 ]f1, f2〉. Expanding this as in (4.2), we are left
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with some terms that can be handled using the already known Bloom type inequality for
U b1 and the Bloom type inequality for Ai(b2, ·), and also with the new term

〈U b1,b2f1, f2〉 :=
∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(ki)
i =K

∑
J1,J2∈Dm

J
(vj)

j =V

aK,V,(Ii),(Ji)[〈b1〉I2×J2 − 〈b1〉I1×J1 ]

[〈b2〉I2×J2 − 〈b2〉I1×J1 ]〈f1, hI1 ⊗ hJ1〉〈f2, hI2 ⊗ hJ2〉.

To finish the shift case, we now bound U b1,b2 . We use (4.3) with b = b1 and b =
b2. When we multiply these together, we get multiple different terms – we pick two
representative ones

(5.3) [〈b1〉K×V − 〈b1〉K×J1 ][〈b2〉K×J1 − 〈b2〉I1×J1 ]

and

(5.4) [〈b1〉I2×J2 − 〈b1〉K×J2 ][〈b2〉K×J1 − 〈b2〉I1×J1 ].

The point is that in the first case we only have I1, J1 appearing in both terms (and no
I2, J2), and the other one is a mixed case. Nevertheless, they can in fact be handled with
completely analogous estimates. Therefore, we only deal with (5.3).

We use analogous estimates to (4.4), which leads to the need to bound∑
K∈Dn
V ∈Dm

∑
H∈Dm

H(v1−h)=V

νθ1(K ×H)

|K ×H|
∑
L∈Dn

L(k1−l)=K

∑
J1∈Dm

J
(h)
1 =H

νθ2(L× J1)

|L× J1|
∑

I1,I2∈Dn

I
(l)
1 =L

I
(k2)
2 =K

∑
J2∈Dm

J
(v2)
2 =V

∣∣aK,V,(Ii),(Ji)〈f1, hI1 ⊗ hJ1〉〈f2, hI2 ⊗ hJ2〉
∣∣,(5.5)

where l ∈ {1, . . . , k1} and h ∈ {1, . . . , v1}. The second line of (5.5) is dominated by¨
1L×J1MDn,Dm(∆k1,v1

K×V f1)〈|∆k2,v2
K×V f2|〉K×V νθ2 .

Therefore, continuing in the same way (5.5) can be dominated with∑
K∈Dn
V ∈Dm

¨
MDn,Dm(MDn,Dm(∆k1,v1

K×V f1)νθ2)MDn,Dm(∆k2,v2
K×V f2)νθ1 .

Writing νθ1 = (µθ1λθ2)1/pλ−1/p we can dominate this with∥∥∥( ∑
K∈Dn
V ∈Dm

[MDn,Dm(MDn,Dm(∆k1,v1
K×V f1)νθ2)]2

)1/2∥∥∥
Lp(µθ1λθ2 )

×
∥∥∥( ∑

K∈Dn
V ∈Dm

[MDn,Dm∆k2,v2
K×V f2]2

)1/2∥∥∥
Lp′ (λ1−p′ )

.

We can conclude the case (5.3) by using Fefferman–Stein, square function estimates and
also noting that νθ2pµθ1λθ2 = µ. We are done with the shift case.
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5.2. The partial paraproduct case. We show that if U = Uk is a partial paraproduct of
the form (4.6), then we have

|〈[b2,[b1, U ]]f1, f2〉|
.[µ]Ap ,[λ]Ap

‖b1‖bmo(νθ1 )‖b2‖bmo(νθ2 )(1 + max(k1, k2))2‖f1‖Lp(µ)‖f2‖Lp′ (λ1−p′ ).

Recall (4.7) with b = b1. The contributions of the first two terms of (4.7) to 〈[b2, [b1, U ]]f1, f2〉
are handled using the same general argument that we used with shifts.

We now bound the contribution of the third term of (4.7) to 〈[b2, [b1, U ]]f1, f2〉, i.e. we
bound 〈[b2, U b1 ]f1, f2〉. Expanding this as in (4.7), the first two terms can be handled
using the already known Bloom type inequality for U b1 and the Bloom type inequality
for Ai(b2, ·) and a1

i (b2, ·), while the last term can be handled using Lemma 4.8 and the
Bloom for U b1 . Therefore, we are again facing the need to handle U b1,b2 .

Recall that U = Uk is of the form (4.6). When written out, U b1,b2 includes terms of the
form (〈b1〉I2×V − 〈b1〉I1×V )(〈b2〉I2×V − 〈b2〉I1×V ). As before, we split

〈b1〉I2×V − 〈b1〉I1×V = [〈b1〉I2×V − 〈b1〉K×V ] + [〈b1〉K×V − 〈b1〉I1×V ],

and similarly with the function b2. These multiplied together divides U b1,b2 into four
parts, which are handled in the same way. To complement the case we handled with
shifts (where we chose (5.3) instead of (5.4)), we choose here the part coming from the
terms

(〈b1〉K×V − 〈b1〉I1×V )(〈b2〉I2×V − 〈b2〉K×V ).

We apply the estimate (4.4), and see that it suffices to bound the term∑
K∈Dn

∑
L1,L2∈Dn

L
(ki−li)
i =K

∑
I1,I2∈Dn

I
(li)
i =Li

∑
V ∈Dm

νθ1(L1 × V )

|L1 × V |
νθ2(L2 × V )

|L2 × V |

×
∣∣∣aK,V,(Ii)〈f1, hI1 ⊗

1V
|V |

〉
〈f2, hI2 ⊗ hV 〉

∣∣∣,
(5.6)

where li ∈ {1, . . . , ki}, i ∈ {1, 2}.
If ρ1, ρ2 ∈ A2(Rm), then

〈ρ1〉J〈ρ2〉J ≤ [ρ1]A2 [ρ2]A2〈ρ1ρ2〉J .

Indeed, by Hölder’s inequality there holds for any cube J ⊂ Rm that

1 =
1

|J |

ˆ
J
(ρ1ρ2)

1
3 ρ
− 1

3
1 ρ

− 1
3

2 ≤ 〈ρ1ρ2〉
1
3
J 〈ρ
−1
1 〉

1
3
J 〈ρ
−1
2 〉

1
3
J ,

which combined with 〈ρ−1
i 〉J ≤ [ρi]A2〈ρi〉−1

J gives the claim. If L1, L2 ∈ Dn and V ∈ Dm,
this shows that

νθ1(L1 × V )

|L1 × V |
νθ2(L2 × V )

|L2 × V |
≤ [〈νθ1〉L1,1]A2 [〈νθ2〉L2,1]A2

〈
〈νθ1〉L1,1〈νθ2〉L2,1

〉
V

≤ [ν]A2

〈
〈νθ1〉L1,1〈νθ2〉L2,1

〉
V
.

(5.7)
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We turn to (5.6). If K,L1, L2, I1 and I2 are as in (5.6), then applying (5.7) one sees that
the inner sum over V ∈ Dm is less than [ν]A2 multiplied by
ˆ
Rm

∑
V ∈Dm

∣∣aK,V,(Ii)〈〈f1, hI1〉1
〉
V
〈〈f2, hI2〉1, hV 〉

∣∣ 1V
|V |
〈νθ1〉L1,1〈νθ2〉L2,1

.[〈νθ1 〉L1,1
〈νθ2 〉L2,1

]A∞

|I1|1/2|I2|1/2

|K|

ˆ
Rm

MDm(〈f1, hI1〉1)MDm(〈f2, hI2〉1)〈νθ1〉L1,1〈νθ2〉L2,1,

where we used the application of sparse domination as in (4.11). Notice that Theorem 2.1
in [5] implies that 〈ν〉θ1L1,1

.[ν]A2
〈νθ1〉L1,1 (while the other direction is trivial by Hölder’s

inequality). This implies that [〈νθ1〉L1,1〈νθ2〉L2,1]A2 ≤ C([ν]A2).
Recall the identity MDm(〈fi, hIi〉1) = 〈ϕ1

Dn,Dmfi, hIi〉1. We sum the last estimate over
K,L1, L2, I1 and I2, and move the summations inside the integral over Rm. Then, for a
fixed x2 ∈ Rm, we can use one parameter estimates in the same spirit that we used in
connection with (5.5). This shows that (5.6) is dominated by C([µ]Ap , [λ]Ap) multiplied
by ¨

Rn+m

∑
K∈Dn

M1
Dn(∆1

K,k1ϕ
1
Dn,Dmf1)M1

Dn(M1
Dn(∆1

K,k2ϕ
1
Dn,Dmf2)νθ2)νθ1 .

From here the estimate can be concluded by familiar steps. This ends our study of U b1,b2 .
To finish our treatment of partial paraproducts, we need to bound the contribution of

the last term of (4.7) to 〈[b2, [b1, U ]]f1, f2〉. Expanding using our usual rules leads us to
the following sum of terms

8∑
i=1

∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(k1)
1 =I

(k2)
2 =K

aK,V,(Ii)
〈
(〈b1〉I1,1 −

〈
b1〉I1×V )〈f1, hI1〉1

〉
V
〈Ai(b2, f2), hI2 ⊗ hV 〉

−
2∑
i=1

∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(k1)
1 =I

(k2)
2 =K

aK,V,(Ii)
〈
(〈b1〉I1,1 −

〈
b1〉I1×V )〈a1

i (b2, f1), hI1〉1
〉
V
〈f2, hI2 ⊗ hV 〉

+
∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(k1)
1 =I

(k2)
2 =K

aK,V,(Ii)
〈
(〈b1〉I1,1 −

〈
b1〉I1×V )(

〈
b2〉I1×V − 〈b2〉I1,1)〈f1, hI1〉1

〉
V

× 〈f2, hI2 ⊗ hV 〉

+
∑
K∈Dn
V ∈Dm

∑
I1,I2∈Dn

I
(k1)
1 =I

(k2)
2 =K

aK,V,(Ii)[
〈
b2〉I2×V −

〈
b2〉I1×V ]

〈
(〈b1〉I1,1 −

〈
b1〉I1×V )〈f1, hI1〉1

〉
V

× 〈f2, hI2 ⊗ hV 〉
= I + II + III + IV.

The estimates for I and II follow quite directly from (4.1) and lemmas 3.1 and 4.8. The
term IV can be handled using Lemma 4.8 and the Bloom type inequality of U b2 . The
term III requires a more careful treatment, which we will now proceed to give.
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We will use the following one parameter estimate
1

|J |

ˆ
J
|b1 − 〈b1〉J ||b2 − 〈b2〉J ||g| . [w1]A∞ [w2]A∞‖b1‖BMO(w1)‖b2‖BMO(w2)

× 1

|J |

ˆ
J
[MDm(MDm(g)w2)w1 +MDm(MDm(g)w1)w2].

We can prove this by using (4.9) again:ˆ
J
|b1 − 〈b1〉J ||b2 − 〈b2〉J ||g|

.
∑
P∈S1
P⊂J

∑
Q∈S2
Q⊂J

〈
|b1 − 〈b1〉P |

〉
P

〈
|b2 − 〈b2〉Q|

〉
Q

ˆ
P∩Q
|g|

≤ ‖b1‖BMO(w1)‖b2‖BMO(w2)

∑
P∈S1
P⊂J

∑
Q∈S2
Q⊂P

〈w1〉P 〈w2〉Q
ˆ
Q
|g|

+ ‖b1‖BMO(w1)‖b2‖BMO(w2)

∑
Q∈S2
Q⊂J

∑
P∈S1
P⊂Q

〈w1〉P 〈w2〉Q
ˆ
P
|g|

. [w2]A∞‖b1‖BMO(w1)‖b2‖BMO(w2)

∑
P∈S1
P⊂J

〈w1〉P
ˆ
P
MDm(g)w2

+ [w1]A∞‖b1‖BMO(w1)‖b2‖BMO(w2)

∑
Q∈S2
Q⊂J

〈w2〉Q
ˆ
Q
MDm(g)w1.

The desired one parameter estimate follows from this as previously. Define now

ϕν1,ν2,1Dn,Dmf1 =
∑
I∈Dn

hI ⊗MDm(MDm(〈f1, hI〉1)〈ν1〉I,1)〈ν2〉I,1,

and notice that we get

|
〈
(〈b1〉I1,1 −

〈
b1〉I1×V )(

〈
b2〉I1×V − 〈b2〉I1,1)〈f1, hI1〉1

〉
V
|

.[µ]Ap ,[λ]Ap
‖b1‖bmo(νθ1 )‖b2‖bmo(νθ2 )

〈
ϕν

θ1 ,νθ2 ,1
Dn,Dm f1 + ϕν

θ2 ,νθ1 ,1
Dn,Dm f1, hI1 ⊗

1V
|V |

〉
.

It is not hard to show (similarly as in Lemma 4.8) that

(5.8)
∥∥ϕνθ1 ,νθ2 ,1Dn,Dm f1

∥∥
Lp(λ)

.[µ]Ap ,[λ]Ap
‖f1‖Lp(µ).

This, together with (4.1), ends our treatment of the term III . We are done with the partial
paraproducts.

5.3. The full paraproduct case. The only term that arises here, which cannot be han-
dled using exactly the same arguments that we have seen above with shifts and partial
paraproducts, is∑

K∈Dn
V ∈Dm

aK,V
〈
(b1 − 〈b1〉K×V )(b2 − 〈b2〉K×V )f1

〉
K×V 〈f2, hK ⊗ hV 〉.
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The natural maximal function is now

M b1,b2
Dn,Dmf = sup

R∈Dn×Dm

1R
|R|

ˆ
R
|b1 − 〈b1〉R||b2 − 〈b2〉R||f |.

We have
‖M b1,b2
Dn,Dm‖Lp(µ)→Lp(λ) .[µ]Ap ,[λ]Ap

‖b1‖bmo(νθ1 )‖b2‖bmo(νθ2 )

as in Proposition 4.13. Indeed, using the same notation, and noticing that µ1−q′
0 , λ1−q′ ∈

Aq′ ⊂ Aq′/θ for any θ ∈ [0, 1], we then have, for θ1 ∈ (0, 1) and x ∈ R, that

1

|R|

ˆ
R
|b1 − 〈b1〉R||b2 − 〈b2〉R||f |

≤
( 1

|R|

ˆ
R
|f |qµ0

) 1
q
( 1

|R|

ˆ
R
|b1 − 〈b1〉R|

q′
θ1 µ1−q′

0

) θ1
q′
( 1

|R|

ˆ
R
|b2 − 〈b2〉R|

q′
θ2 µ1−q′

0

) θ2
q′

.[µ]Ap ,[λ]Ap

( 1

|R|

ˆ
R
|f |qµ0

) 1
q
(λ1−q′(R)

|R|

) θ1
q′ ‖b1‖bmo(νθ1 )

(λ1−q′(R)

|R|

) θ2
q′ ‖b‖bmo(νθ2 )

. ‖b1‖bmo(νθ1 )‖b‖bmo(νθ2 )

( 1

λ(R)

ˆ
R
|f |qµ0

) 1
q
.

After this we can conclude as previously. We still comment on the case θ1 = 0. Let
s = q′/t′, where t = t([λ]Ap) ∈ (q, p+q2q′ + 1) (these restrictions imply that s > 1 and

p/st > 1) will be chosen later to be close enough to q. Set µ1−t′
1 = µ1−q′

0 . For x ∈ R we
have

1

|R|

ˆ
R
|b1 − 〈b1〉R||b2 − 〈b2〉R||f |

≤
( 1

|R|

ˆ
R
|b1 − 〈b1〉R|s

′
) 1
s′
( 1

|R|

ˆ
R
|b2 − 〈b2〉R|st

′
µ1−t′

1

) 1
st′
( 1

|R|

ˆ
R
|f |stµ1

) 1
st

.[µ]Ap ,[λ]Ap
‖b1‖bmo‖b2‖bmo(ν)

(λ1−q′(R)

|R|

) 1
q′
( 1

|R|

ˆ
R
|f |stµ1

) 1
st

≤ ‖b1‖bmo‖b2‖bmo(ν)[MDn,Dm,λ(MDn,Dm(fstµ1)
q
stλ−1)(x)]

1
q .

To finish, we prove that λ−
p
q

+1 ∈ A p
st

. We first prove λ−
p
q

+1 ∈ A p
q
. We can take q close

enough to p such that (p/q)′ > p. Using Hölder’s inequality with the exponent u, where
1/u := (p− 1)(p/q − 1) < (p− 1)(p′ − 1) = 1, we get

1

|R|

ˆ
R
λ
− p
q

+1
( 1

|R|

ˆ
R
λ
) p
q
−1
≤
( 1

|R|

ˆ
R
λ
− 1
p−1

)(p−1)( p
q
−1)( 1

|R|

ˆ
R
λ
) p
q
−1
≤ [λ]

p
q
−1

Ap
.

Finally, we choose t very close to q – notice that if t → q then s → 1 and so p/st → p/q.
Using the open property of Ap/q weights we conclude that λ−

p
q

+1 ∈ A p
st

. Using this we
can end the proof.

APPENDIX A. EMBEDDING bmo(w) ⊂ BMOprod(w)

We give a proof of the embedding – we thank Prof. T. Hytönen for giving us an outline
of the proof.
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A.1. Proposition. We have ‖b‖
BMOD

n,Dm
prod (w)

.[w]A2
‖b‖bmoDn,Dm (w) if w ∈ A2(Rn × Rm).

Proof. First, using the `2-valued Kahane–Khintchine inequality notice that( ∑
I∈Dn
J∈Dm

|∆I×Jf(x)|2
)1/2

=
(
E
∑
I

∣∣∣∑
J

εJ∆I×Jf(x)
∣∣∣2)1/2

∼ E
(∑

I

∣∣∣∆I

(∑
J

εJ∆2
Jf(·, x2)

)
(x1)

∣∣∣2)1/2
.

Taking L1(w) norm, and using the known (see [6]) lower bound

‖g‖Lp(ρ) .[ρ]A∞

∥∥∥(∑
I

|∆Ig|2
)1/2∥∥∥

Lp(ρ)
, p ∈ (0,∞),

we get∥∥∥( ∑
I∈Dn
J∈Dm

|∆I×Jf |2
)1/2∥∥∥

L1(w)
&[w]A2

¨
Rn+m

E′
∣∣∣∑
J

ε′J∆2
Jf(x1, x2)

∣∣∣w(x1, x2) dx1 dx2

∼
∥∥∥( ∑

J∈Dm
|∆2

Jf |2
)1/2∥∥∥

L1(w)
.

Next, using the weighted one parameterH1−BMO duality result (i.e. the one parameter
analog of (3.3)), see Wu [26], we get∣∣∣¨

Rn+m
b(x)f(x) dx

∣∣∣ .[w]A2
‖b‖bmoDn,Dm (w)

∥∥∥( ∑
J∈Dm

|∆2
Jf |2

)1/2∥∥∥
L1(w)

.[w]A2
‖b‖bmoDn,Dm (w)

∥∥∥( ∑
I∈Dn
J∈Dm

|∆I×Jf |2
)1/2∥∥∥

L1(w)
.

(A.2)

Borrowing a calculation from [14] we can conclude the proof. Indeed, for all Ω we have( ∑
I∈Dn,J∈Dm
I×J⊂Ω

|〈b, hI ⊗ hJ〉|2〈w〉−1
I×J

)1/2

= sup
{∣∣∣ ∑

I∈Dn,J∈Dm
I×J⊂Ω

〈b, hI ⊗ hJ〉aI,J
∣∣∣ : ∑

I∈Dn,J∈Dm
I×J⊂Ω

|aI,J |2〈w〉I×J = 1
}
.

Given such a = (aI,J) define fa =
∑

I,J
I×J⊂Ω

aI,JhI ⊗ hJ . Then we have using (A.2) and

Hölder’s inequality that∣∣∣ ∑
I∈Dn,J∈Dm
I×J⊂Ω

〈b, hI ⊗ hJ〉aI,J
∣∣∣ = |〈b, fa〉|

.[w]A2
‖b‖bmoDn,Dm (w)

∥∥∥( ∑
I∈Dn,J∈Dm
I×J⊂Ω

|aI,J |2
1I ⊗ 1J
|I||J |

)1/2∥∥∥
L1(w)
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≤ ‖b‖bmoDn,Dm (w)w(Ω)1/2
( ∑
I∈Dn,J∈Dm
I×J⊂Ω

|aI,J |2〈w〉I×J
)1/2

= ‖b‖bmoDn,Dm (w)w(Ω)1/2.

We are done. �

A.3. Remark. Notice that actually the proof works just by assuming that w is uniformly in
A∞(Rn) andA∞(Rm), and that we also do not need the full strength of the little BMO as-
sumption: we can e.g. use ess supx1∈Rn ‖b(x1, ·)‖BMODm (w(x1,·)) instead of the little BMO
norm.

APPENDIX B. BOUNDEDNESS OF THE STRONG MAXIMAL FUNCTION

We give a proof of the following variant of a result of Fefferman [9]. The proof is quite
clear in the dyadic setting. We note that we get a polynomial dependence on [λ]Ap , while
in Barron–Pipher [1] there seemed to be some exponential dependence.

B.1. Proposition. Let p ∈ (1,∞) and λ ∈ Ap(Rn × Rm). Then for s ∈ (1,∞) we have

‖MDn,Dm,λf‖Ls(λ) . [λ]
1+1/s
Ap

‖f‖Ls(λ).

Proof. Write D = Dn × Dm. By interpolation it is enough to prove ‖MD,λf‖Ls,∞(λ) .

[λ]
1+1/s
Ap

‖f‖Ls(λ). Fix f and α > 0, and set Ω = Ω(α) = {MD,λf > α}. Write Ω =
⋃∞
j=1Rj

for some rectangles Rj ∈ D with 〈|f |〉λRj > α. It suffices to fix N and prove

(B.2) αλ
( N⋃
j=1

Rj

)1/s
. [λ]

1+1/s
Ap

‖f‖Ls(λ).

Write Rj = Ij × Jj , and reindex the cubes so that `(Jj+1) ≤ `(Jj), j = 1, . . . , N − 1. We
use Cordoba–Fefferman algorithm. Let s1 = 1, and suppose s1 < s2 < · · · < sl−1 < N
have been chosen. Then sl is defined, if it exists, to be the smallest integer j ∈ (sl−1, N ]
so that ∣∣∣Rj ∩ l−1⋃

i=1

Rsi

∣∣∣ < |Rj |
2
.

Write J = {1, . . . , N}, Js = {si} and J cs = J \ Js. Notice that for all j0 ∈ J we have

(B.3) Rj0 ∩
⋃
j∈Js
j<j0

Rj =
[
Ij0 ∩

⋃
j∈Js
j<j0
Jj0⊂Jj

Ij

]
× Jj0 .

For x2 ∈ Rm we set Ij(x2) = Ij if x2 ∈ Jj , and Ij(x2) = ∅ otherwise. Let j0 ∈ J cs be
arbitrary. Then we have ∣∣∣Rj0 ∩ ⋃

j∈Js
j<j0

Rj

∣∣∣ ≥ |Rj0 |
2

.

Using (B.3) we see that∣∣∣Ij0(x2) ∩
⋃
j∈Js

Ij(x2)
∣∣∣ ≥ ∣∣∣Ij0(x2) ∩

⋃
j∈Js
j<j0

Ij(x2)
∣∣∣ ≥ |Ij0(x2)|

2
.
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Using that for all cubes I ⊂ Rn and all subsets E ⊂ I we have

(B.4)
λ(·, x2)(E)

λ(·, x2)(I)
≥ [λ]−1

Ap

( |E|
|I|

)p
we conclude that

λ(·, x2)
(
Ij0(x2) ∩

⋃
j∈Js

Ij(x2)
)
≥ c1[λ]−1

Ap
λ(·, x2)(Ij0(x2)), c1 := 2−p.

Since j0 ∈ J cs was arbitrary we get for all x2 ∈ Rm that⋃
j∈J cs

Ij(x2) ⊂
{
MDn,λ(·,x2)

(
1⋃

j∈Js Ij(x2)

)
≥ c1[λ]−1

Ap

}
.

Using that MDn,λ(·,x2) : L1(λ(·, x2))→ L1,∞(λ(·, x2)) (even with constant 1) we get

λ(·, x2)
( ⋃
j∈J

Ij(x2)
)
. [λ]Apλ(·, x2)

( ⋃
j∈Js

Ij(x2)
)
,

which, after integrating over x2 ∈ Rm, gives our first key inequality

(B.5) λ
( ⋃
j∈J

Rj

)
. [λ]Apλ

( ⋃
j∈Js

Rj

)
.

Let now j0 ∈ Js. Then by construction and using (B.3) we get for all x2 that∣∣∣Ij0(x2) ∩
⋃
j∈Js
j<j0

Ij(x2)
∣∣∣ ≤ |Ij0(x2)|

2
.

Applying (B.4) to Ej0(x2) := Ij0(x2) \
⋃
j∈Js
j<j0

Ij(x2) we have

λ(·, x2)(Ej(x2)) ≥ c1[λ]−1
Ap
λ(·, x2)(Ij(x2)), j ∈ Js, x2 ∈ Rm.

Dualising against g with ‖g‖Ls(λ(·,x2)) ≤ 1, using the above sparseness property and using
that MDn,λ(·,x2) : Ls(λ(·, x2))→ Ls(λ(·, x2)) (with a norm independent of λ) we get∥∥∥ ∑

j∈Js

1Ij(x2)

∥∥∥s′
Ls′ (λ(·,x2))

. [λ]s
′
Apλ(·, x2)

( ⋃
j∈Js

Ij(x2)
)
.

Integrating over x2 ∈ Rm we get our second key inequality

(B.6)
∥∥∥ ∑
j∈Js

1Rj

∥∥∥
Ls′ (λ)

. [λ]Apλ
( ⋃
j∈Js

Rj

)1/s′

.

Recalling that 〈|f |〉λRj > α and using (B.5) and (B.6) we get our claim (B.2):

αλ
( N⋃
j=1

Rj

)1/s
. [λ]

1/s
Ap
α

λ
(⋃

j∈Js Rj
)

λ
(⋃

j∈Js Rj
)1/s′ ≤ [λ]

1/s
Ap

∑
j∈Js
´
Rj
|f |λ

λ
(⋃

j∈Js Rj
)1/s′

≤ [λ]
1/s
Ap

∥∥∑
j∈Js 1Rj

∥∥
Ls′ (λ)

λ
(⋃

j∈Js Rj
)1/s′ ‖f‖Ls(λ) . [λ]

1+1/s
Ap

‖f‖Ls(λ).

�
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