A C° INTERIOR PENALTY DISCONTINUOUS GALERKIN
METHOD FOR FOURTH ORDER TOTAL VARIATION FLOW.
II: EXISTENCE AND UNIQUENESS

C. BHANDARI!, R.H.W. HOPPE?2, AND R. KUMARS3

ABSTRACT. We prove the existence and uniqueness of a solution of a C° In-
terior Penalty Discontinuous Galerkin (C° IPDG) method for the numerical
solution of a fourth order total variation flow problem that has been devel-
oped in part I of the paper. The proof relies on a nonlinear version of the
Lax-Milgram Lemma. It requires to establish that the nonlinear operator as-
sociated with the C° IPDG approximation is Lipschitz continuous and strongly

monotone on bounded sets of the underlying finite element space.

1. INTRODUCTION

We consider the following fourth order total variation flow (TVF) problem:

ow e Vw . .
1.13, T‘i’ AV = :0 :QX O,T,
(1.1a) 5 P Tl in @ (0,T)
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Vw c e /e Vuw . N .
1.1b n.-f——=n-VV(V. —— ] =0 onX:=TIx(0,T7),
(L.1) =k A ) (0,7)
(1.1c) w(-,0) = w® in Q.

Here, () c R? is a bounded domain with boundary I = o0, T > 0 is the final
time, 8 > 0 is some constant, ny stands for the exterior unit normal at I, and
w® € L?(Q) is some given initial data.

The fourth order equation (1.1a) has to be understood as the flow problem

B)
_é%; € OEy-1(w)

associated with the total variation-H ~! (TV-H ~1) minimization of the energy func-

tional
(1.2) E(w) = 5/|¢w| dz, >0,
Q

where 91 E(w) is the H~! subdifferential of E.

In fact, if we introduce an inner product on H 4(() according to

(w,2) 1 g= (6(—A‘1w),V(—A_1z))O)Q,
the subdifferential

Oy Bw)={ve H'Q) | (v,z—w)_1.0 < E(z) — E(w) for all z € H}(Q)}

)

reads as follows (cf., e.g., [6]):

O E(w) = {AV - £ | &(&) € 0B(Vu(

=2
>

)}
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Here, ®(|n|) and 0®(|n|) are given by

Bn/ln| ,ifn #0

{reR?||r|<p},ifn=0

(1.3) ®(n) =BInl, 0®(n) =

The fourth order total variation flow (TVF) problem (1.1a)-(1.1c) describes surface
relaxation below the roughening temperature. We note that similar fourth order
TVF problems occur in image recovery. For more details we refer to [2] and the

references therein.

In the sequel, we consider the regularized fourth order TVF problem

(1.4a) % + BAV - ((6* + |[Vw[>)"V2Vw) =0 in Q,

(1.4b) ng - B(6% + Vw|?)"V2Vw= 0 on¥,
ng B@(@ (6% + |§w|2)71/2§w) =0 on3,

(1.4c) w(-,0) = w’ in Q,

where § > 0 is a regularization parameter. We further consider a scaling in both

the time variable and the spatial variables according to
(1.5) t = (5t, T = 5.1%, 1< <2

Setting T := 67,0 := 6, T := 90, Q := 0 x (0,T),% :=T x (0,7), and u°(z) =

w?(§71z), as well as

(1.6) w(Vu) =1+ |Vul?,
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the scaled and regularized fourth order TVF problem reads as follows

ou

(1.7a) 5+ BO2AV - (w(Vu) V2Vu) =0 inQ,

(1.7b) nr - B6%(w(Vu)~ /2 V) :nr-,852V<V-((w(Vu)_1/2Vu)> — 0 oy,

(1.7¢) u(-,0) =u’ in Q.

The numerical solution of the regularized fourth order TVF problem with periodic
boundary conditions has been considered in [7] based on a mixed formulation of
the implicitly in time discretized problem. At each time-step, this amounts to the
solution of two second order elliptic PDEs by standard Lagrangian finite elements
with respect to a triangulation of the computational domain 2. On the other
hand, a C° Interior Penalty Discontinuous Galerkin (C°ITPDG) method has been
developed and implemented in [2]. The advantage of the C°TPDG approach is that
it directly applies to the fourth order problem and thus only requires the numerical
solution of one equation by using the same Lagrangian finite elements as in the

mixed method.

The paper is organized as follows: After some basic notations from matrix analysis
and Lebesgue and Sobolev spaces presented in section 2, in section 3 we recall the
CYIPDG approximation of the implicity in time discretized, regularized, and scaled
fourth order TVF problem from [2]. Section 4 is devoted to a proof of the existence
and uniqueness of a solution of the C°TPDG approximation by an application of
the nonlinear version of the Lax-Milgram Lemma. In particular, this requires to
show that the nonlinear operator associated with the C°IPDG approximation is
Lipschitz continuous and strongly monotone on bounded subsets of the underlying

function space.
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2. BASIC NOTATIONS

T

For vectors x = (x1,,7,)0,y = (y1,--- ,yn)? € R"™ and for matrices A =

(aij)fj=1, B = (bij)}' ;=1 € R"*" we denote by x -y and A : B the Euclidean inner
product x -y = Z?:l x;y; and the Frobenius inner product A : B = szzl aijbij.
In particular, x| := (x-x)"/? and |A| := (A : A)'/2 refer to the Euclidean norm
and the Frobenius norm, respectively.

We will further use standard notation from Lebesgue and Sobolev space theory
(cf., e.g., [9]). In particular, for a bounded domain D C R?% d € N, we refer
to LP(D),1 < p < oo, as the Banach space of p-th power Lebesgue integrable
functions on D with norm || - ||o»,p and to L*>(D) as the Banach space of es-

sentially bounded functions on D with norm || - ||o,c0,p. Moreover, we denote by

W#P(D),s € Ry,1 < p < oo, the Sobolev spaces with norms || -

|s,p,0. We note
that for p = 2 the spaces L*(D) and W*2(D) = H*(D) are Hilbert spaces with
inner products (-,-)o,2,p and (-,)s,2,p. In the sequel, we will suppress the subindex
2 and write (-,-)o,p, (*,*)s,p and || - |lo,p, || -
-
IR

where 1/p+1/q = 1. In particular, H=*(D) = (H§(D)*.

s,p instead of (-, -)o.2,p, (+,*)s,2,p and

02,0, - ||s,2,p- The space W?(D) is the closure of C§° with respect to the

s,p,p-norm. We refer to W=5?(D),s € Ry,1 < p < o0, as the dual of W;"(D),

3. C% INTERIOR PENALTY DISCONTINUOUS GALERKIN APPROXIMATION

We perform a discretization in time of (1.7) with respect to a partition of the
time interval [0,7] into subintervals [ty,—1,tm],1 < m < M,M € N, of length

At :=t,, — t;p—1 = T/M. Denoting by «™ some approximation of u at time ¢,,,
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for 1 < m < M we have to solve the problems

(3.1a) U™ — U™ 4 ALBOPAV - (w(Vu™)TV2Vu™) = 0 in Q,
(3.1b) nr - 6% (w(Vu™)"/2Vu™) =0 on T,
(3.1c) nr - BdQV(V : (w(Vum)_1/2Vum)) =0onl.

We reformulate the second term on the left-hand side of (3.1a) according to

(3.2) AV - (w(Va™) V2T = ¥ - v(v : (w(wm)flﬂwm)) -

V-V - V((Vu™) " V2gu™m).
As has been shown in [2], we have
(3.3) V(w(Vum)_l/2Vum) = w(Vum)_S/Qﬂ(um)DQUm,

where D?u™ is the 2 x 2 matrix of second partial derivatives of v™ and the matrix

M(u™) is given by

(3.4) M(u™) :=

ou™ u™ ou™ \2
_611 BLEQ 1+(8$2)

We note that the matrix M(u") is symmetric positive definite with the eigenvalues
(3.5) AminM@U™) =1, Apaz(M(u™)) = 1+ |[Vu™ 2
Setting

(3.6) A (v) == w(Vo)"*2M(v),
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the weak formulation of the implicitly in time discretized regularized fourth order

TVF problem (3.1a)-(3.1c) reads: Find
u™ eV i={ve H}Q) | nr - B6°w(Vv)"Y?Vo=0o0n T}
such that for all v € V' it holds

(3.7) (u™ —u™ 1 v)o.0 + AtﬂéQ/ (él(um)D%m) : D%y dx = 0.
Q

For the discretization in space we assume 7T, to be a geometrically conforming,
simplicial triangulation of 2. We denote by &,(Q2) and &, (T) the set of edges of Tp
in the interior of Q2 and on the boundary I', respectively, and set &, := &}, (Q)UER(T).
For K € T, and E € &, we denote by hx and hg the diameter of K and the length
of E, and we set h := max(hgx | K € Ty). Due to the assumptions on 7y, there exist

constants 0 < cg < Cg, 0 < cg < Cg, and 0 < cg < Cy such that for all K € T

it holds

(3.8a) crhx < hg < Crhg, FE €&,(0K),
(3.8b) coh < hi < Coh,

(3.8¢) csh? < meas(K) < Csh.

Denoting by P(T),k € N, the linear space of polynomials of degree < k on T, for

k € N we define
(3.9) Vi = {vp € CY(Q) | vp|r € P(T), T € T},
and note that Vi, C H1(Q), but V}, ¢ H?(Q2). Further, we introduce

(3.10) M, = {gh€L2(9)2x2 |gh|K€Pk(K)2X2’ KeT)
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as the space of element-wise polynomial moment tensors.
For interior edges E € &,(Q2) such that F = K, N K_, Ky € T}, and boundary

edges on I we introduce the average and jump of Vv, according to

L(Volenk, + Vonlenk_ ), E € Ex(Q)
(3.11a) (Vondp = 3 (Venlzos, ) :
Vvh|E , FE e 5h(F)
Voulenk, — Vonlenk_ » E € Er(Q)
(311b) [V’Uh]E =
Vuplg , E € En(D)

The average {Awvy} g and jump [Avp]g are defined analogously. We further denote
by ng the unit normal vector on E pointing in the direction from K, to K_. In

the sequel, for E € &, we will frequently use

(3.12a) Horwn}e| < 2{vn|}e{lwnl}E,

(3.12b) [vrwn] el < 4{|vnl}e{lwnl}E.

In fact, for £ € £,(2) (3.12a) and (3.12b) follow from

1
Hunwntel < 5 (lonley lwnle, + lonle_lwale_) < 2{|val}edlwnl}e,

llonwrle| < (Jvnleywnle, + [vnle_lwnle_) < Hlonl}e{lwnl}te,

whereas it is obvious for E € &,(T"). We will also use

(3.13) Z [Vhwi] B = Z {on}elwnle + Z [vn]e{wn} e

Eeé&y, Ecé&y, Ec&n(Q)
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Following the general approach [1] for DG approximations of second order elliptic
boundary value problems, in [2] we have derived the following C°TPDG approxima-

tion of (3.7): Find u}* € V}, such that for all vj, € V}, it holds
(3.14) (upt,vn)o0 + AtBS%alf (W, vy ul) = (U;Ln_l,’l}h)ovg, vp € V.

Here, for z;, € Vj, the mesh-dependent semilinear C°TPDG form alf (-, 23) : Vi, x
Vi — R is given by
(3.15) ap’ (un,vn; 2n) = > (A, (zn)D?up, D*vp)o.x —

Keﬂz

> (g {A,(z1)D*un}pnp, np - [w(Vz) " Voulg)os —
Ee&y

Z (ng - {A,(z1)D*vp} png, g - W(Vzn) "4V un]p)o.p +
Ee&y,

a Y hg'(ng - [w(Ve) 4 Vunle,ng - [w(V2) "4 Vo] )0k,
E€&y

where o > 0 is a penalty parameter and

(3.16) A (21) = w(Vzn) """ M(zp).

4. EXISTENCE AND UNIQUENESS OF A SOLUTION OF THE COIPDG

APPROXIMATION

The existence and uniqueness of a solution of the C°IPDG approximation (3.14)

can be shown using the following nonlinear analogue of the Lax-Milgram Lemma.

Theorem 4.1. Let V' be a Hilbert space with inner product (-,-)y and associated

norm || - ||v and let V* be the dual space with norm || - |

v+. We denote by (-, -)v+ v

the dual pairing between V* and V. Let A:V — V* be a nonlinear operator with
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A(0) = 0 that is Lipschitz continuous on B(0,R) := {v € V | ||v|lv < R},R > 0,

i.e., there exists a constant I'(R) > 0 such that for all v,w € V it holds

(4.1) [A(v) = A(w)]

ve <T(R) [[v—wlv.

Moreover, assume that A : V. — V* is strongly monotone on B(0, R), i.e., there

exists a constant y(R) > 0 such that for all v,w € B(0, R) it holds
(4.2) (A(v) = A(w),v = wyv-y > Y(R) [l —wl}.

Then, for any £ € V* with

I'(R)? R)2
(4.3) el < T8 (1— - 1B )R,
the nonlinear equation
(4.4) Au=1¢

has a unique solution u € B(0, R).

Proof. We refer to 7 : V* — V as the Riesz mapping, i.e.,
(45) <€7U>V*,V = (Tg, U)V, LeV* veV.

Then, v € B(0,R) is a solution of (4.4) if and only if u is a fixed point of the

nonlinear map 7T : V' — V defined by means of
Tw):=v—p(tA(v) —7L), veV, p>0.

Due to (4.5) we have

(4.6) IT(w) =T} =

lv = wlf}y — 2p{A(v) = A(w),v — w)v- v + p*[| A(v) — A(w)][}..
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Now, using (4.1) and (4.2) it follows that
IT(w) = T(w)Il§ < qllv—wll, q:=1-2py(R) + p°T(R)*.

For p € (0,2v(R)/T(R)?) we have ¢ < 1 and hence, T is a contraction on B(0, R).
We note that ¢ attains its minimum g, = 1—v(R)?/T(R)? for ppmin = v(R)/T(R)?.

Moreover, choosing w = 0 in (4.6) and observing A(0) = 0, we have
IT(v) = TO)I} < gminllv]7,
and hence, for v € B(0, R) it holds
IT@)llv < IT(w) =TO)lv + [TO)lv < VaminR + pll£]lv-.
Consequently, we have
(4.7) IT@)llv <R,

if £ € V* satisfies (4.3). We deduce from (4.7) that T(B(0,R)) C B(0,R). The
Banach fixed point theorem asserts the existence and uniqueness of a fixed point

in B(0, R). O

In order to apply the previous result to the C°TPDG method (3.14), we introduce

a mesh-dependent semi-norm | - |2 5 o and weighted norm || - ||2,5,0 on V}, according
to
(4.8a) |vnl2,p.0 = ( Z /Dzvh - D%y, dx +

KeTn K

1/2
o S [ g (Tulef ds)

Ecén Ee&y,

1/2
(4.8b) lonllzna = (lonldo+ lonBag) -
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We further note that (3.14) can be written as the nonlinear equation
(4.9) APGym — g,

where the nonlinear operator AP : V,, — V;* and the linear functional ¢, € V}*

are given by

(4.10) <AhDG’Uh,wh>v,;,vh = (vn, wn)o,0 + AtB6? af)C (vp, whsvn),  vh, wh € Vi,
(4.11) ﬂh(vh) = (u?il,vh)o}g, vp € Vi

For the proof of Lipschitz continuity on bounded sets and strong monotonicity of

the nonlinear operator AP¢ we need the inverse estimates (cf., e.g., [3, 5]):

For p € [1,00] and ¢, m € Ny it holds

Cinv

1 1 ‘
meas(K)me=(0275) pm=t

(4.12) lvnllm.p,x < lvnlle,x,  vn € Vh,

where Cj,, is a positive constant that only depends on k,¢,m,p and the shape
regularity of the triangulation. We further need the trace inequalities (cf., e.g.,
[8, 10]): For p € [1,00], m € Ny, and K € T, it holds

(4.13a) IVorllmpox < Crhi IV onlmpic, on € Vi,

(4.13b) | Dl posc < Orhi |D*vnllm e, on € Vi

where Cr is a positive constant that only depends on k,m,p and the shape regu-

larity of the triangulation. Moreover, we will frequently use the following Poincaré-

Friedrichs inequality for piecewise H2-functions (cf., e.g., [4])

(4.14) IVurlloo < Cprlvnlona,  vn € Vi,
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where Cpp > 0 is a constant that only depends on ) and the shape regularity of

the triangulation.

In the sequel, we will frequently use some basic estimates for the weight function

w(Vuy). In particular, for 8 > 0 and v € V}, it holds
(4.15a) w(Vv) P = (1+|Vo)~F <1,
(4.15D) w(V)~ B Ty| < w(Vo)~ B (1 + | Wol?)1/2
< w(Vo) B2 < g,
Moreover, for v,w € V3, and £(s) := w + s(v — w), s € [0, 1], it holds

(4.16a) w(Vv)™? —w(Vw)™? = —25/w(V§(s))7ﬁ71V§(8) V(v —w) ds,
0

(4.16b) w(Vv) "M(v) — w(Vw) "M(w) = /w(Vf(s))_BE(f(s);v —w) ds —

1

28 / W(VE(s)PIVE(S) - V(0 — w)M(E(s)) ds,

0

where the matrix F(v;w),v,w € V}, is given by

ow dv. ow dv 4 Ow v
8%2 8:82 8%1 8%2 8902 8361
(4.17) F(v;w) := , v,w € V.
Ow Ov | Ow Ov Ow v
le 8222 8$2 8w1 Bacl le
An easy computation yields
(4.18) |F(v;w)|> < 5 |Vo]? |[Vwl]?.

It follows from (4.15b) and (4.16a) that

(4.19a) |w(Vv)*B — w(Vw)*B| < 28|V (v —w)|,
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whereas in view of (3.5),(4.15b),(4.16b), and (4.18) we have

(4.19b) |w(V0) " M(v) — w(Vw) "M(w)| < (28 + V5)|V (v — w)],

We will first show that the nonlinear operator AP is Lipschitz continuous on the

ball

(4.20) Bh(O,R) = {’Uh eV, | ||Uh||2,h,fz < R}

Theorem 4.2. The nonlinear operator A?G is Lipschitz continuous on the ball

B (0, R). In particular, there exists I'(h, R) > 0 such that

(421) ||AEG”Uh — A;?Gwh”v'; S F(h,R) ||'Uh — whHQ’h@, Vp, Wh € Bh(O, R)

Proof. For vy, wy, € By(0, R) we set &, := vy, — wp,. In view of the definition (4.10)

of the nonlinear operator A? & we have

(4.22)  ||APC v — AP wy|

jote] DG
ve = sup [(A,“vn — Ay " wn, zn)vr v, | =
[[zrll2,n,0<1

sup | (&n, 2n)o,0 + AtBS? (afc(vm znson) — ap  (wp, Zh;wh)) |-

[[znll2,n,0<1

According to the definition (3.15) of the semilinear form a?¢(-, ;) we find

(4.23) aPC (vn, zn;vn) — aP% (wp, 2n;wp) =
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Z / (él(vh,)DZUh — él(wh)Dzwh) : D%z, dx

KEIThK

— Z / (nE . {éQ(Uh)D2Uh}E ng Nng - [w(Vvh)_1/4Vzh]E -
Ee€én

ng - {éz(wh)DQwh}E ng Nng - [w(th)_1/4Vzh]E) ds

— Z / (nE . {éz(vh)DQZh}E ng Nng - [w(Vvh)fl/‘leh]E -
Ee&n g

ng - {AQ(wh)DQZh}E ng ng - [w(th)_1/4th]E) ds

+ « Z hEl/ (I’IE . [w(Vvh)*l/“Vvh]E ng - [w(Vvh)*l/“Vzh]E —
Eecé&y E

ng - [w(Vwy) " YiVuwy)p ng - [w(th)*l/‘*th}E) ds.

We will estimate the four terms on the right-hand side of (4.23) separately.

(i) For the first term on the right-hand side of (4.23) we obtain

Z /(él(vh)D%h —él(wh)Dth) : D2z, do =

KE’ThK
Z /él(vh)DQ&L : D%z, dx + Z /(él(vh) —él(wh))D%uh : D2z, du.
KG'ThK K€7—hK

=1 = I
In view of (3.5),(3.6), and (4.15a) and using Hoélder’s inequality as well as the
Cauchy-Schwarz inequality, we get the following upper bound for I;:

(4.24) L1 < Y [ DDz de <
KE’ThK

1/2 1/2
D d Dl dr) <
> ([war w) (1[ af? dr)

KeTy K

(X 1%l dr) (X 102l ax)

KeTn KeTh
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Likewise, using (3.8b),(3.8¢),(4.16b), the inverse inequality (4.12), the Poincaré-
Friedrichs inequality for piecewise H2-functions (4.14), and observing || D?wy |0, x <

lwrllz,no < R, K € Tr, we can estimate I from above as follows:

LI < D [ 1A (vh) = A, (wp)[[D*ws|[D?2| do <
KeﬂLK

6+vD) Y [IValtulip®al o <

KEThK
1/2 1/2

3+V8) 3 IV6nloec( [ 1D%unf? do) ([ D2 do) " <

KeTn K K
3+ VB)eg 2CinuR Y b V&0 D*2nllox <

KeTn

1 - _ 1/2 1/2

3+ VB)eg'es 2 Cne B (Y2 IV A) (D0 1220l k)

KeT, KeTy,

_ 1/2
< 3+ VB)eg'es *Con CrrRE nlana( D ID%2nlRx) -
KeTh

Hence, setting CS) =3+ \/g)célcgl/QC’imepR, we thus have

1/2
(4.25) L < O enlono (D 1D%8x)
KeTh
(ii) Setting &(Vup, Vwy) = w(Vu,) V4 — w(Vwy,) /4, the second term on the

right-hand side of (4.23) can be written as

Z /(IIE . {éQ(’Uh)DQ’Uh}E ng ng - [W(Vvh)_1/4Vzh]E -
Eetn g

ng - {é2(wh)D2wh}E ng ng - [w(th)*l/‘leh]E) ds =
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Z ng - {é2(Uh)D2€h}E ng ng - [W(VU}L)71/4VZ}L]E ds +
EEE}‘LE

=I5

Z ng - {(éQ(vh) — éQ(wh))Dzwh}E ng ng - [w(Vvh)_1/4Vzh]E ds +
E€E, 3,

=11y

Z ng - {éQ(wh)DQwh}E ng ng - [@(Vop, Vwp)Vzp]E ds.
EGShE

= 1II3

Setting Fy := Ey,FEy := E_, for E € £,(Q), and using (3.5),(3.8a),(3.16),(4.15a),

and the trace inequality (4.13b), for the first term I7; we find

L1 < Y [ {D*G}elng - [Vanle| ds <

EéghE
2
3 2 [ iplnlng (Valslds+ >[I0l (Valel ds <
EEEh(Q)E =1 Ee&n(T) g
_ 1/2
Z Zh’l/Z /|D2€h dS) El/Q(/|l'lE : [VZh]E|2 dS) +
Ee€&),(Q) i=1 2
/2 1/2
> (n” / D262 ds) nt( / np - (Vs ds) - <
E€&,(T) o I
1/2 1/2
(X melplon) (3 b / ne- [Valef ds)”” <
KeT, E€&y
/2
2
Cll?,/ OT( Z ||D2§h||g,K) Z hy /|HE [Vzile ds) )
KeTh Eecg),

We thus have

(126) 1| < 0@ (Y D2 ) (X 1/|nE V2] 02 ds)l/Q,

KeTy, FEe&y E
where Cf) = CIE/QCT. In a similar way, using (3.5),(3.8a)-(3.8¢),(3.16),(4.16b), the
inverse inequality (4.12), the trace inequality (4.13a), the Poincaré-Friedrichs in-

equality for piecewise H?-functions (4.14), and observing || D?ws]lo.x < [Jwall2.n.0 <
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R, K € Ty, the second term I, can be estimated from above according to

5 1/2
@) Rl < G4 VIO (X 196 et [ D*unf ds)
KeTn K
/2
Z hy /|nE (Vznle ds) <
Ec&p
5 1/2
G+ VBICKCr( 3 196 B e [ 1DPunf? ds)
KeTn K
1/2
Z /|nE (Vznle ds) <
Ecgy,

5 L _ 1/2
(5 +VB)g e Conn O Cr BN (S |V k)

KeTy
Z /|nE VZh E|2 ds) S
Ee&y,
(3) 2 1/2
<Oy h™ |€h|2h9( Z /InE [Vzng] ds) ,
Eeé&y
where C’f) = (% + \/g)célcglCimepC}%/zCTR. In a similar way, for II3 we
obtain
|13 <
1/2 2 2 2 2 1/2
X 19l st [ 107 Pas) (3 0z / g [V IsPds) <
KeT, 9K Ecé&p E
1/2 2, 12 /2
ok CT( 3 ||Vzh||OOoK | D2wy| dx) Z hg \nE Vel ds) <

KeTn Eeé&)

1/2
célcglcmvC'pFC’;{/ZCTRhfl|Zh\2,h,Q( Z h;jl ng - [th}EP ds)

Ecgy, E
and hence,
(4)7 -1 -1 2 1/2
(4.28) 11| < ¢Ph |zh|27h,g( S hp' [ Ing - [Vénlsl ds) :
Ee€é&y, E

where 01(4 = cQ Cg C”prFC 1/2 CrR.
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(iii) For the third term on the right-hand side of (4.23) we have

> [ (ne (4,00 D0} i s [o(T0n) T
EEShE

ng - {22(’11};1)1)22;1}]3 ng ng - [w(th)_1/4th]E) ds =

Z ng - {(éz(vh) *éz(wh))D%h}EnE ng - [w(Vvh)*l/‘leh]E ds +
Eeé’hE

=11

Z ng - {éQ(wh)DQZh}EnE ng - [@(Vvh, th)Vvh]E ds +
EEShE

=111,

Z ng - {éz(wh)Dth}EnE ng - [w(Vvh)_1/4V§h]E ds .
EGghE

= III3

The terms II1y, 1115, and III3 can be estimated from above in much the same

way as the corresponding terms for I7. We obtain

1/2
(4.29) 11| < Oﬁf)h*1|§h|2,h,g( S [ D% ds) :
KEThK

where C’(A5) = (% + \/g)célcglCinvCppC}%/QCTR, and

1/2

(4.30a) III] < Cl(f)h_l|§h|2,h79( 3 / D22, |2 ds) :
KE7-}LK

(7),—1 22 1/2

(4.30b) 11115 < COh |gh|2,h,g( S [ D% ds) :
KEThK

where C’f) = 01(47) = CélcglcinvCPFcllg/QCTR-
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(iv) Finally, for the fourth term on the right-hand side of (4.23) we get
4 31 Z h ! (nE : [W(V'Uh)il/Alvvh]E ng - [w(vvh)ilﬂlvzh]E -
Ee&y E

ng - [w(Vwy) Y4Vuw)p ng - [w(th)_1/4Vzh]E) ds =

o] Z hil /IIE : [M(Vvh)71/4V§h]E ng - [w(Vvh)’l/‘LVzh]E ds +
E

Eecgy,

=1V

a3 by / np - [W(Vwn) " Vwplp i - [5(Von, Vo) Vel ds +
EESh, E

=1V

o Z hgl /nE @O(Vup, Vwp, )V g ng - [w(th)_1/4Vzh]E ds .
FEcé&p E

=1V3

Using (3.8a),(4.15a), the trace inequality (4.13a), and the Poincaré-Friedrichs in-

equality for piecewise H2-functions (4.14), for IV} we obtain

Wi <a 3 05" [ Ine (Ve (Valel ds <

FEe&y, E
—1/2 2 —1/2 2 1/2
« Z h |IIE Véh E| dS) E ( |IIE . [Vzh]E\ ds) S
Ecgy, E
(8) 1 &
o ( S hpt [ g [Vésl? ds Z g - [Vl ds) ,
Ecé&y, E EeghE

where 01(48) := a. Setting K} := K and Ky := K_ for E € £,(Q),E =K, NK_,
and K1 = Ky = K for E € &,(T),FE € E&,(K NT), the term IV, can be estimated

from above as follows:

Vel <a > ZIIVShHoOoK (/ hg g - [th]E|2ds)1/2

Eecgy, i=1

1/2
(/h,;1|nE [ Venlelds)
E
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Using (3.8b),(3.8¢c), the inverse inequality (4.12), and the Poincaré-Friedrichs in-

equality for piecewise H2-functions (4.14), for IV}, we have

2 2
> IVenlloo, < cgles Cinh ™ D Ve

i=1 i=1

lox, <
—1 -1 -1 1 -1 —1
2¢g €5 Cinoh™ || V&lo,o < 2¢ ¢g CinoCrrh™ [Enl2,n,0-

1/2
Hence, observing ( S by [Ing - [th]E|2ds) < |lwnll2,n.0 < R, we obtain
Ee€&y, E

1/2
(4.32) V3| < C el / hg' g [VanlplPds)
E
where CS) = 20{01;1CEICZ‘HUCPFR. In the same way we get
(10) 7 —1 -1 2 1/2
(4.33) (13] < CLOR el / hp'ing - [Venlelds)
E

where C’SO) = Cﬁ‘g).

Setting C4 := E}il CX)7 it follows from (4.22)-(4.33) that

(AR v — AR wn, 2n) vy v

< max(1, BAL2Cah™Y) ||€nll2.n.0ll2nll2.n.0,

which implies (4.21) with T'(h, R) := max(1, BAt5?C4h1). O

Theorem 4.3. Under the assumption that there exist constants 0 < k < 1 and

Ca > 0 such that
(4.34) BAL? < CaARMT,

for sufficiently small 0 < h < 1 there exists y(h, R) > 0 such that for vp,wy €

By, (0, R) it holds

(4.35) (AR%on — AP, vn — wi)ve v = ¥ (h R)llon — wall3 0



22 C. BHANDARI!, R.H.W. HOPPEZ, AND R. KUMAR?
Proof. For vy, wy, € By (0, R) we set &, := vp, — wy. Taking the definition (4.10) of

the nonlinear operator AhDG into account, we have

(436) <AZG’U}L - AEGU}}L, £h>Vh’f7Vh =

1€nl15.0 + BALS® (afc(vh,fh; vp) — a;?G(wmfh;wh))-

Recalling the definitions (3.6),(3.16) of A and A, for the second term on the

right-hand side of (4.36) it follows that

(4.37) ap%(vn, &nsvn) — af (wn, &niwp) =

Z /(él(vh)DQ’Uh *Al(wh))Dzwh) 5D2§h dx

KEnK

— Z (IIE . {é2(vh)D2Uh}E ng ng - [w(Vvh)_1/4V§h]E —
EGEhE

ng - {A,(wp)D*wi}p np np - [W(th)_1/4V§h]E) ds

— Z / (IIE . {éz(l}h)ngh}E ng ng - [w(Vuh)’l/“Vvh]E —

ng - {A2(wh)D2§h}E ng ng - [w(th)_1/4th]E) ds

+ Z h;Jl/ (nE Jw(Vor) VAV ng - [w(Vo) " VAVE]E —

EcEy, E

ng - [w(th)’l/‘Lth]E ng - [w(th)*l/‘lth]E) ds.

As in the previous theorem, we will estimate the four terms on the right-hand side

of (4.37) separately.
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(i) For the first term we obtain

Z /(él(vh)D2vh —él(wh)D2wh> :D2§h de =

K€7—hK
Z /él(vh)DQ&L : D%¢, do + Z /(él(vh) —él(wh))D%]h . D2, da .
KeTh i KeTh i

=1 =1,

As far as I; is concerned, due to (3.5) and (3.6) we have
[ A @026 D do > (14 V0l e )2 ID%60
K

Using (3.8b),(3.8¢), the inverse inequality (4.12), the Poincaré-Friedrichs inequality

for piecewise H2-functions (4.14), and observing ||vs||l2.n.0 < R, we get

_ _ —92 _9 _
||Vvh||(2),oo,K S cszczgnthQHVvhHg,K S CQ Cs Cz2n7jh‘ 2||V,Uh||8,ﬂ S

— — — 0 -
(3252 C2, Chph 2 onlE g <772,

where 7)) := cg’cs’C2,,ChpR?. Observing h < 1, it follows that
(U V0R i) ™/2 2 B2 + 7)) 702 > 131+ 7)) 7072 = )0,

where ’y](\/l[) = (1+ 7](2))_3/ 2. Hence, we obtain the following lower bound for I;:

(4.38) I > ’75\}1)}13 Z HD2§}L||8,K~
KeTy

In order to estimate I5 from above, we use (3.8b),(3.8¢),(4.19b), Holder’s inequality,

the inverse inequality (4.12), the Cauchy-Schwarz inequality, and observe || D?wy||o. x



24 C. BHANDARI!, R.H.W. HOPPEZ, AND R. KUMAR?

< wpll2n0 < R, K € Tp:

1Ll < (3+V5) Y [ V& D*wy||D*¢n| de <
KGThK

1/2 1/2
(B+vE) Y Vel x /|D2wh|2 i) ([ ax) <
K

KeTh

3+ VB)eg ' Ciny Y b €nllo x| D*whllo kID%Enllo k<
KeThn

;(2”5}1 0,k <

B+ VB)e5 CRLR Y hillénl

KeTn

(3+f)cQ Cs’lcanURh ° Z th”aK
KeTh

Hence, it follows that
(4.39) L] < O5 h*|&ullE

where Cg) = (3 + \/S)Cégcglcfan'

(ii) We now deal with the second term on the right-hand side of (4.37) which we

rewrite as follows:

Z / (IIE ' {é2(vh,)D2Uh}E ngp ng - [w(Vo,) Y4V -

EthE
ng - {A,(wn)D*wi}p np ng - [w(th)_1/4V§h]E) ds =

Z /IIE A, (0n) D¢} e np np - [w(Vo) /AVE]E ds +
EEE;LE

=15

> /nE H{(A,(vn) — A, (wn))D*wi} g np np - [w(Vor) "4 VE g ds
Eecé&y, E

= II,

+ Y /HE {A, (wn)D*wi}p np ng - [(Voy, V) VE] s ds,
Eeén g

= II3
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where &(Vup, Vwy) = w(Vuy) V4 —w(Vwy,) "% In view of (3.5),(3.8b),(3.12),
(3.16),(4.15), Holder’s inequality, the Cauchy-Schwarz inequality, the inverse in-
equality (4.12), and the trace inequality (4.13b) we can estimate II; from above as

follows:

<8y /{|D2§h|}E{|V§h|}E ds <

EEgh,E
1/2 1/2
o3 (Jurraris as) " ( [uvars a)” <
FEeé&y, E B
1/2 1/2

4y (/lDthl2 ds) (/|V5h|2 as) " <
KeTn oK 9K
4cg 7 S B ID 6o,k hi [V énlloox <

KeTy
_ _ 1/2 1/2
15 037 (3D ID%E ) (X IValidk) <

KeTh KeT,

e C2, O3 N &l <
KeTh

40(5401'2711)072“}174“&1”%,9'
Hence, we obtain
(4.40) 111] < O enlR o

2 C2. Likewise, for 11, we have

where 01(32) = 405402

1 4G +V8) 3 [1VaP)edD?unle ds <

Ecgy, E

20+ 3 ([uvarte as) ([0t as)" <

Ecg&y,
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5 1/2 1/2
2(3 + /|V§h|4 ds </|D2wh|2 ds) =
K Th BK 6K
< 'S mPIVER 4 o hil 1D wnllo.0x <
KeTy

22+ VB et (2 I9lta) (2 1D%wnl)

KeTy, KeTh

IN

5 o B 1/2
2 + V5)eg'es?CinuC3 RA Q(K; IIthIIS,K) <
h

< +VB)eg esPC3LCRRR S 6nll? -

KeTn
It follows that
(4.41) L] < C®n~

where 01(33) =2(5 +\[)CQ 031/203 CZR. Finally, I3 can be bounded from above

muv

in much the same way as Il,. We get
(4.42) 15| < O i,

where C’gl) = QCE)S V208 02

mnv

(iii) For the third term on the right-hand side of (4.37) we have

Z /(I’IE . {éQ(’Uh)DQ&L}E ng ng - [w(Vuh)_1/4Vvh]E —

EGEhE

ng - {é2(wh)D2§h}E ng ng - [w(th)fl/‘leh]E) ds =
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> [ ng-{(A(vn) — A, (wi)D*6} eng ng - [w(Von) "V pds +
Eeé&y E

= IIL

Z /nE . {é2(wh)D2§h}EnE ng - [0(Vop, Vw,)Vop]gds +
EGSh,E

= III;

Z ng - {éQ(wh)DZSh}EnE ng - [w(Vvh)_1/4Vvh]Eds.
EEShE

= III3

The three terms can be estimated from above in a similar way as the corresponding

terms in 1. We obtain
(4.43)

1L < CPR Y2 g, IR <Ol g, HII] < O R &2 o,

where C’S) =2(3 +\[)CQ 051/2C3 CZR, C(6) = 2¢ _3 _1/203 CZR, and C’g) =

muv muv

c®.

(iv) For the fourth term on the right-hand side of (4.37) we obtain

(149) o Y hy / ng - (Vo) 4 Voulp np - W(Ve) " V4VE] s -

Eecé&y

5 [w(Vwn) VAV wy)p ng - [w(th)_1/4V§h]E) ds =

a ) hil/nE [w(Vor) VB np - [w(Ven) YAV p ds +

=1V

o Z hg' /nE (w(Vwp) VAV w) g ng - [0V, V) Ve g ds +
E

Eeé&y
= IV,
o Z h;l/nE O(Vup, Vwp) Vg [w(Vw;L)_1/4V£;L]E ds
Eecé&y E

=1V3
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In view of (3.13), the first term IV; can be further split according to

Wi=a ) hg' /nE Aw(Vo) Y p[VEE np - {w(Vor) TV} E[VEE ds+
Eeé&y E

= IV

a hEI/nE'[W(Vvh)_l/4]E{V§h}E ng - [w(Vvr) Y p{V& e ds +
FeE Q) 1

= IVi2

a Y hg 1/nE w(Vor) VM E{VE}E nE - {w(Vor) TV 5[ VEE ds +
ECEL(Q) o

= IVi3

o 3 ngt [ ne (Vo) Vel Vel ne - (Vo) (Ve ds.
E

E€EL(Q)

= IVia

For IViy, setting By := E, and Fy := E_ for E € £,(2), we have

Vuza Y (+j anhnmw Vg /|nE (V] sl2ds +
E€&n(Q) =1

o 3 (4 Vul )Yy / g - [VE][2ds.
EES;,(F)

Taking advantage of (3.8b),(3.8¢c), the inverse inequality (4.12), and the Poincaré-
Friedrichs inequality for piecewise H2-functions (4.14), it follows that for E €

En(OK) it holds

IV 0nll0.00.2 < | Vonllomosc < cg" *Cinh [ Vonllox <

-1 —1/2 — -1 —1/2 — -1 —1/2 —
cg'cs P Cinoh ™| Vupllog < cg'es*CinuCrrh™| leg2CinyCprh 'R,

and hence, observing h < 1, we get

(1 + ||V/Uh||aoo7E)_1/2 Z (1 + C 2 CznvCIQDFRQh_2)_1/2 =

(h* +cges' G,

ChpR?)™V2h > (14 cx’cs'Ch

muv

C%.R?)~?h,
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Consequently, we obtain
(4.45) IVis > o) h > ! / Ing - [Vén]g|2ds,
Ee&, %
where 72 = a(1 + cg’cs C2,,ChpRY) 712,
The remaining terms I'Vy;,2 < i < 4, can be estimated from above similarly as the

corresponding terms in Theorem 4.2:

(4.46)

8 — 9), _ _
[IVis| < CS Y €n)2 0, 1TVas| < O R Y620, 1TVial < CHOR 4 €n]12 0,

where 01(38) = 2ac 1(7127“}02 and C(g 01(310) = QCS). The remaining
two terms Vo and IV3 can be estimated from above in the same way. Using
(3.8a),(3.8b),(4.19a), the inverse inequality (4.12), the trace inequality (4.13a), the
Cauchy-Schwarz inequality, and observing

( Z hit /\nE [Vwn]e]? ds)1/2 <

Ecgy, E

we obtain

Vel < dacg e *h 2 S0 0" [ g (Vunlel{ V6V ds <

Ee€&y, E
/2
40405/ ~1/2)-1/2 Z h—1/2 /\nE [Vws g ds /{|Vgh|}E ds) <
EEE}L
—-3/2 —1/2 —3/2 2 4 1/2
20055 ?h |nE el ds) (32 BVl sox )
Eesh KeTh

e 1/2
< 2acQ3/2cR1/20TRh_3/2( E vah||é,4,K) <
KeTy,

_ 1/2
2OéCQ 1/20127“)0 Rh™ /2 ( Z ||€h ||37K> <
KeTh

2acy P 202,00 RN lgnl? .
KE,Y-}L
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Hence, it follows that

(4.47) [1Va| < CHYRT2g

2
|O,Q’
where 01(311) = 2ac§7/20§1/203nvCTR. Moreover, we get

(4.48) 11Vs] < C52 772642 o

where C’SQ) = Cgl).
Setting Cp := 22121 C,(;) and observing (4.34) as well as h < 1, it follows from

(4.36)-(4.48) that

(4.49) (ADC ), — APCwy,, vy — Wh)vyr v, >

(1= CaCBh") 650 +min(ryy, ami? )® [Enf3 0.
We choose hj,;n, > 0 such that
(4.50) q:=CaCphl.. <1 and min(%(\}), a'yj(\fl))h?m-n <l-gq.

Then, for h < Ay (4.35) follows from (4.49),(4.50) with

(4.51) 7(h, R) == min(y}), an {7 )A2.

Corollary 4.1. Assume that uzn_l satisfies

I(R)? (1 I 0 )R

m—1 <
[un' ™ Moo < T(R)?

for some R > 0 and that (4.34) holds true. Then, for sufficiently small grid size h,

the C°IPDG approzimation (3.14) has a unique solution uj* € Bp(0, R).
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Proof. Using the Lipschitz continuity (4.22) and the strong monotonicity (4.35) of
the nonlinear operator A G the result follows from the nonlinear analogue of the

Lax-Milgram Lemma (Theorem 4.1). O

Remark 4.1. If we choose hyin > 0 such that (4.49) is satisfied as well as hyin <
BCACa4, for b < hpin we have T'(h, R) = BCACah™t in Theorem 4.2 and the
application of Theorem 4.1 for V.=V, and A = A,’?G implies that the fixed point

operator T is a contraction as long as

(D) (2)
v(h, R) min(Yy/ s ) s
4.52 2 =2 h°.
(4.52) P=2T(h R)? C3C%

In other words, the contraction property degenerates for h — 0. This reflects the

very singular character of the fourth order total variation flow.
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