Now showing items 1-11 of 11

    • Weighted norm inequalities for rough singular integral operators 

      Li K.; Pérez C.; Rivera-Ríos I.; Roncal L. (Journal of Geometric Analysis, 2018-08-17)
      In this paper we provide weighted estimates for rough operators, including rough homogeneous singular integrals $T_\Omega$ with $\Omega\in L^\infty(\mathbb{S}^{n-1})$ and the Bochner--Riesz multiplier at the critical index ...
    • Vector-valued operators, optimal weighted estimates and the $C_p$ condition 

      Cejas M.E.; Li K.; Pérez C.; Rivera-Ríos I.P. (Science China Mathematics, 2018-09)
      In this paper some new results concerning the $C_p$ classes introduced by Muckenhoupt and later extended by Sawyer, are provided. In particular we extend the result to the full range expected $p>0$, to the weak norm, to ...
    • Three Observations on Commutators of Singular Integral Operators with BMO Functions 

      Pérez C.; Rivera-Ríos I.P. (AWM-Springer Series, Harmonic Analysis, Partial Differentail Equations, Complex Analysis, Banach Spaces, and Operator Theory, 2016-07-01)
      Three observations on commutators of Singular Integral Operators with BMO functions are exposed, namely 1 - The already known subgaussian local decay for the commutator, namely $\[\frac{1}{|Q|}\left|\left\{x\in Q\, : ...
    • Reverse Hölder Property for Strong Weights and General Measures 

      Luque T.; Pérez C.; Rela E. (Journal of Geometric Analysis, 2016-06-30)
      We present dimension-free reverse Hölder inequalities for strong $A^{\ast}_p$ weights, $1 \le p < \infty$. We also provide a proof for the full range of local integrability of $A^{\ast}_1$ weights. The common ingredient ...
    • Quantitative weighted mixed weak-type inequalities for classical operators 

      Ombrosi S.; Pérez C.; Recchi J. (Indiana University Mathematics Journal, 2016-06-30)
      We improve on several mixed weak type inequalities both for the Hardy-Littlewood maximal function and for Calderón-Zygmund operators. These type of inequalities were considered by Muckenhoupt and Wheeden and later on by ...
    • Proof of an extension of E. Sawyer's conjecture about weighted mixed weak-type estimates 

      Li K.; Ombrosi S.; Pérez C. (Mathematische Annalen, 2018-09)
      We show that if $v\in A_\infty$ and $u\in A_1$, then there is a constant $c$ depending on the $A_1$ constant of $u$ and the $A_{\infty}$ constant of $v$ such that $$\Big\|\frac{ T(fv)} {v}\Big\|_{L^{1,\infty}(uv)}\le c\, ...
    • A note on the off-diagonal Muckenhoupt-Wheeden conjecture 

      Cruz-Uribe D.; Martell J.M.; Pérez C. (WSPC Proceedings, 2016-07-01)
      We obtain the off-diagonal Muckenhoupt-Wheeden conjecture for Calderón-Zygmund operators. Namely, given $1 < p < q < \infty$ and a pair of weights $(u; v)$, if the Hardy-Littlewood maximal function satisfies the following ...
    • Mixed weak type estimates: Examples and counterexamples related to a problem of E. Sawyer 

      Ombrosi S.; Pérez C. (Colloquium Mathematicum, 2016-01-01)
      In this paper we study mixed weighted weak-type inequal- ities for families of functions, which can be applied to study classic operators in harmonic analysis. Our main theorem extends the key result from [CMP2].
    • Borderline Weighted Estimates for Commutators of Singular Integrals 

      Pérez C.; Rivera-Ríos I.P. (Israel Journal of Mathematics, 2016-07-01)
      In this paper we establish the following estimate \[ w\left(\left\{ x\in\mathbb{R}^{n}\,:\,\left|[b,T]f(x)\right| > \lambda\right\} \right)\leq \frac{c_{T}}{\varepsilon^{2}}\int_{\mathbb{R}^{n}}\Phi\left(\|b\|_{BMO}\f ...
    • $A_1$ theory of weights for rough homogeneous singular integrals and commutators 

      Pérez C.; Rivera-Ríos I.P.; Roncal L. (2016-07-01)
      Quantitative $A_1-A_\infty$ estimates for rough homogeneous singular integrals $T_{\Omega}$ and commutators of $BMO$ symbols and $T_{\Omega}$ are obtained. In particular the following estimates are proved: \[ \|T_\Omega ...
    • $A_1$ theory of weights for rough homogeneous singular integrals and commutators 

      Pérez C.; Rivera-Ríos I.; Roncal L. (Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, 2019)
      Quantitative $A_1-A_\infty$ estimates for rough homogeneous singular integrals $T_{\Omega}$ and commutators of $\BMO$ symbols and $T_{\Omega}$ are obtained. In particular the following estimates are proved: \[ \|T_\Omega ...