Analysis of Partial Differential Equations (APDE)
Browse by
Recent Submissions

Proof of an extension of E. Sawyer's conjecture about weighted mixed weaktype estimates
(Mathematische Annalen, 201809)We show that if $v\in A_\infty$ and $u\in A_1$, then there is a constant $c$ depending on the $A_1$ constant of $u$ and the $A_{\infty}$ constant of $v$ such that $$\Big\\frac{ T(fv)} {v}\Big\_{L^{1,\infty}(uv)}\le c\, ... 
On the global wellposedness of a class of 2D solutions for the Rosensweig system of ferrofluids
(Journal of Differential Equations, 201809)We study a class of 2D solutions of a BlochTorrey regularization of the Rosensweig system in the whole space, which arise when the initial data and the external magnetic field are 2D. We prove that such solutions are ... 
Weighted norm inequalities for rough singular integral operators
(Journal of Geometric Analysis, 20180817)In this paper we provide weighted estimates for rough operators, including rough homogeneous singular integrals $T_\Omega$ with $\Omega\in L^\infty(\mathbb{S}^{n1})$ and the BochnerRiesz multiplier at the critical index ... 
Defects in Nematic Shells: a Gammaconvergence discretetocontinuum approach
(Archive for Rational Mechanics and Analysis, 201807)In this paper we rigorously investigate the emergence of defects on Nematic Shells with a genus different from one. This phenomenon is related to a nontrivial interplay between the topology of the shell and the alignment ... 
On the regularity of solutions to the kgeneralized kortewegde vries equation
(Proceedings of the American Mathematical Society, 201807)This work is concerned with special regularity properties of solutions to the kgeneralized Kortewegde Vries equation. In [Comm. Partial Differential Equations 40 (2015), 1336–1364] it was established that if the initial ... 
Absence of eigenvalues of twodimensional magnetic Schroedinger operators
(20180101)By developing the method of multipliers, we establish sufficient conditions on the electric potential and magnetic field which guarantee that the corresponding twodimensional Schroedinger operator possesses no point ... 
Asymptotics in Fourier space of selfsimilar solutions to the modified Kortewegde Vries equation
(20180706)We give the asymptotics of the Fourier transform of selfsimilar solutions to the modified Kortewegde Vries equation, through a fixed point argument in weighted $W^{1,\infty}$ around a carefully chosen, two term ansatz. ... 
On the improvement of the Hardy inequality due to singular magnetic fields
(20180712)We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the AharonovBohm field in all dimensions and establish a sharp Hardytype ... 
Regularity of fractional maximal functions through Fourier multipliers
(2018)We prove endpoint bounds for derivatives of fractional maximal functions with either smooth convolution kernel or lacunary set of radii in dimensions $n \geq 2$. We also show that the spherical fractional maximal function ... 
Variable coefficient Wolfftype inequalities and sharp local smoothing estimates for wave equations on manifolds
(2018)The sharp Wolfftype decoupling estimates of BourgainDemeter are extended to the variable coefficient setting. These results are applied to obtain new sharp local smoothing estimates for wave equations on compact Riemannian ... 
Sparse bounds for pseudodifferential operators
(Journal d'Analyse Mathématique, 2018)We prove sparse bounds for pseudodifferential operators associated to H\"ormander symbol classes. Our sparse bounds are sharp up to the endpoint and rely on a single scale analysis. As a consequence, we deduce a range of ... 
Spectral stability of Schrödinger operators with subordinated complex potentials
(Journal of Spectral Theory, 20180628)We prove that the spectrum of Schroedinger operators in three dimensions is purely continuous and coincides with the nonnegative semiaxis for all potentials satisfying a formsubordinate smallness condition. By developing ... 
On the Relationship between the OneCorner Problem and the $M$Corner Problem for the Vortex Filament Equation
(Journal of Nonlinear Science, 20180628)In this paper, we give evidence that the evolution of the vortex filament equation (VFE) for a regular Mcorner polygon as initial datum can be explained at infinitesimal times as the superposition of M onecorner initial ... 
Sharp exponential localization for eigenfunctions of the Dirac Operator
(2018)We determine the fastest possible rate of exponential decay at infinity for eigenfunctions of the Dirac operator $\mathcal D_n + \mathbb V$, being $\mathcal D_n$ the massless Dirac operator in dimensions $n=2,3$ and ... 
On Bloom type estimates for iterated commutators of fractional integrals
(Indiana University Mathematics Journal, 201804)In this paper we provide quantitative Bloom type estimates for iterated commutators of fractional integrals improving and extending results from [15]. We give new proofs for those inequalities relying upon a new sparse ... 
SelfAdjoint Extensions for the Dirac Operator with CoulombType Spherically Symmetric Potentials
(Letters in Mathematical Physics, 2018)We describe the selfadjoint realizations of the operator $H:=i\alpha\cdot \nabla + m\beta + \mathbb V(x)$, for $m\in\mathbb R $, and $\mathbb V(x)= x^{1} ( \nu \mathbb{I}_4 +\mu \beta i \lambda \alpha\cdot{x}/{x}\,\beta)$, ... 
Quantitative weighted estimates for singular integrals and commutators
(20180227)In this dissertation several quantitative weighted estimates for singular integral op erators, commutators and some vector valued extensions are obtained. In particular strong and weak type $(p, p)$ estimates, CoifmanFe ... 
Variable Lorentz estimate for nonlinear elliptic equations with partially regular nonlinearities
(Nonlinear Analysis, 20180215)We prove global Calder\'onZygmund type estimate in Lorentz spaces for variable power of the gradients to weak solution of nonlinear elliptic equations in a nonsmooth domain. We mainly assume that the nonlinearities are ... 
Zero limit of entropic relaxation time for the Shliomis model of ferrofluids
(20180211)We construct solutions for the Shilomis model of ferrofluids in a critical space, uniformly in the entropic relaxation time $ \tau \in (0, \tau_0) $. This allows us to study the convergence when $ \tau\to 0 $ for such solutions. 
Lorentz estimates for the gradient of weak solutions to elliptic obstacle problems with partially BMO coefficients
(Boundary Value Problems, 2017)We prove global Lorentz estimates for variable power of the gradient of weak solution to linear elliptic obstacle problems with small partially BMO coefficients over a bounded nonsmooth domain. Here, we assume that the ...