Show simple item record

dc.contributor.authorCañizo J.A.en_US
dc.contributor.authorCao C.en_US
dc.contributor.authorEvans J.en_US
dc.contributor.authorYoldas H.en_US
dc.date.accessioned2019-08-08T07:49:03Z
dc.date.available2019-08-08T07:49:03Z
dc.date.issued2019-02-27
dc.identifier.issn1937-5093
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1003
dc.description.abstractWe study convergence to equilibrium of the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus $(x,v) \in \mathbb{T}^d \times \mathbb{R}^d$ or on the whole space $(x,v) \in \mathbb{R}^d \times \mathbb{R}^d$ with a confining potential. We present explicit convergence results in total variation or weighted total variation norms (alternatively $L^1$ or weighted $L^1$ norms). The convergence rates are exponential when the equations are posed on the torus, or with a confining potential growing at least quadratically at infinity. Moreover, we give algebraic convergence rates when subquadratic potentials considered. We use a method from the theory of Markov processes known as Harris's Theorem.en_US
dc.description.sponsorship"la Caixa" Foundation, MTM2014-52056-P, MTM2017-85067- P, EPSRC grant: EP/L016516/1 (under the ERC grant MAFRAN), FSPM Postdoctoral Fellowship: ANR-17-CE40-0030, DIM PhD Fellowship Program.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherKinetic & Related Modelsen_US
dc.relationES/1PE/SEV-2017-0718en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectHypocoercivityen_US
dc.subjectHarris's Theoremen_US
dc.subjectLinear Boltzmann equationen_US
dc.subjectLinear relaxation Boltzmann equationen_US
dc.subjectKinetic theoryen_US
dc.titleHypocoercivity of linear kinetic equations via Harris's Theoremen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeinfo:eu-repo/semantics/acceptedVersionen_US
dc.identifier.arxiv1902.10588


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess