Show simple item record

dc.contributor.authorPonce Vanegas, F. 
dc.date.accessioned2019-09-19T16:33:51Z
dc.date.available2019-09-19T16:33:51Z
dc.date.issued2019-08
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1013
dc.description.abstractElectrical Impedance Imaging would suffer a serious obstruction if for two different conductivities the potential and current measured at the boundary were the same. The Calder\'on's problem is to decide whether the conductivity is indeed uniquely determined by the data at the boundary. In $\mathbb{R}^d$, for $d=5,6$, we show that uniqueness holds when the conductivity is in $W^{1+\frac{d-5}{2p}+,p}(\Omega)$, for $d\le p<\infty$. This improves on recent results of Haberman, and of Ham, Kwon and Lee. The main novelty of the proof is an extension of Tao's bilinear Theorem.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectCalderón's Problem, Tao's Bilinear Theorem, Complex Geometrical Optics Solutionsen_US
dc.titleA Bilinear Strategy for Calderón's Problemen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/2PE/PGC2018-094528-B-I00en_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España