Show simple item record

dc.contributor.authorCanevari, G.
dc.contributor.authorMajumdar, A.
dc.contributor.authorStroffolini, B.
dc.date.accessioned2019-10-08T20:27:29Z
dc.date.available2019-10-08T20:27:29Z
dc.date.issued2019
dc.identifier.issn0003-9527
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1021
dc.description.abstractWe study a modified Landau-de Gennes model for nematic liq- uid crystals, where the elastic term is assumed to be of subquadratic growth in the gradient. We analyze the behaviour of global minimizers in two- and three-dimensional domains, subject to uniaxial boundary conditions, in the asymptotic regime where the length scale of the defect cores is small com- pared to the length scale of the domain. We obtain uniform convergence of the minimizers and of their gradients, away from the singularities of the limiting uniaxial map. We also demonstrate the presence of maximally biaxial cores in minimizers on two-dimensional domains, when the temperature is sufficiently low.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleMinimizers of a Landau-de Gennes energy with a subquadratic elastic energyen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1007/s00205-019-01376-7
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00205-019-01376-7en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/1PE/MTM2017-82184-Ren_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleArchive for Rational Mechanics and Analysisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España