Soft information for localization-of-things
Abstract
Location awareness is vital for emerging Internetof-
Things applications and opens a new era for Localizationof-
Things. This paper first reviews the classical localization
techniques based on single-value metrics, such as range and
angle estimates, and on fixed measurement models, such as
Gaussian distributions with mean equal to the true value of the
metric. Then, it presents a new localization approach based
on soft information (SI) extracted from intra- and inter-node
measurements, as well as from contextual data. In particular,
efficient techniques for learning and fusing different kinds of SI
are described. Case studies are presented for two scenarios in
which sensing measurements are based on: 1) noisy features
and non-line-of-sight detector outputs and 2) IEEE 802.15.4a
standard. The results show that SI-based localization is highly
efficient, can significantly outperform classical techniques, and
provides robustness to harsh propagation conditions.