Front Propagation in Random Media
Abstract
This PhD thesis deals with the problem of the propagation of fronts under random circumstances. A
statistical model to represent the motion of fronts when are evolving in a media characterized by
microscopical randomness is discussed and expanded, in order to cope with three distinct
applications: wild-land fire simulation, turbulent premixed combustion, biofilm modeling. In the
studied formalism, the position of the average front is computed by making use of a sharp-front
evolution method, such as the level set method. The microscopical spread of particles which takes
place around the average front is given by the probability density function linked to the underlying
diffusive process, that is supposedly known in advance. The adopted statistical front propagation
framework allowed a deeper understanding of any studied field of application. The application of
this model introduced eventually parameters whose impact on the physical observables of the front
spread have been studied with Uncertainty Quantification and Sensitivity Analysis tools. In
particular, metamodels for the front propagation system have been constructed in a non intrusive
way, by making use of generalized Polynomial Chaos expansions and Gaussian Processes.