dc.contributor.author | Jiang, R. | |
dc.contributor.author | Li, K. | |
dc.contributor.author | Xiao, J. | |
dc.date.accessioned | 2019-12-09T09:56:02Z | |
dc.date.available | 2019-12-09T09:56:02Z | |
dc.date.issued | 2019-11 | |
dc.identifier.issn | 2050-5094 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/1051 | |
dc.description.abstract | We show that, if $b\in L^1(0,T;L^1_{\rm {loc}}(\mathbb R))$ has
spatial derivative in the John-Nirenberg space ${\rm{BMO}}(\mathbb R)$, then it generates a unique flow $\phi(t,\cdot)$ which has an $A_\infty(\mathbb R)$ density for each time $t\in [0,T]$.
Our condition on the map $b$ is not only optimal but also produces a sharp quantitative estimate for the density.
As a killer application we achieve the well-posedness for a Cauchy problem of the transport equation in ${\rm{BMO}}(\mathbb R)$. | en_US |
dc.description.sponsorship | National Natural Science Foundation of China (11671039, 11771043, 11922114);
Juan de la Cierva - Formaci\'on 2015 FJCI-2015-24547;
BCAM Severo Ochoa excellence accreditation SEV-2013-0323;
NSERC of Canada (20171864) | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Flow with $A_\infty(\mathbb R)$ density and transport equation in $\mathrm{BMO}(\mathbb R)$ | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.publisherversion | http://doi.org/10.1017/fms.2019.41 | en_US |
dc.relation.projectID | ES/1PE/MTM2017-82160-C2-1-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2018-2021 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | Forum of Mathematics, Sigma | en_US |