dc.contributor.author | Beltran, D. | |
dc.contributor.author | Vega, L. | |
dc.date.accessioned | 2020-02-19T15:53:03Z | |
dc.date.available | 2020-02-19T15:53:03Z | |
dc.date.issued | 2019-11-30 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/1079 | |
dc.description.abstract | We prove certain L2pRnq bilinear estimates for Fourier extension operators associ- ated to spheres and hyperboloids under the action of the k-plane transform. As the estimates are L2-based, they follow from bilinear identities: in particular, these are the analogues of a known identity for paraboloids, and may be seen as higher-dimensional versions of the classical L2pR2q-bilinear identity for Fourier extension operators associated to curves in R2. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | k-plane transform | en_US |
dc.subject | Fourier extension operators | en_US |
dc.subject | bilinear identities | en_US |
dc.title | Bilinear identities involving the k-plane transform and Fourier extension operators | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2017-0718 | en_US |
dc.relation.projectID | EUS/BERC/BERC.2018-2021 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |