Show simple item record

dc.contributor.authorBeltran, D.
dc.contributor.authorVega, L. 
dc.date.accessioned2020-02-19T15:53:03Z
dc.date.available2020-02-19T15:53:03Z
dc.date.issued2019-11-30
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1079
dc.description.abstractWe prove certain L2pRnq bilinear estimates for Fourier extension operators associ- ated to spheres and hyperboloids under the action of the k-plane transform. As the estimates are L2-based, they follow from bilinear identities: in particular, these are the analogues of a known identity for paraboloids, and may be seen as higher-dimensional versions of the classical L2pR2q-bilinear identity for Fourier extension operators associated to curves in R2.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectk-plane transformen_US
dc.subjectFourier extension operatorsen_US
dc.subjectbilinear identitiesen_US
dc.titleBilinear identities involving the k-plane transform and Fourier extension operatorsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España