dc.contributor.author | Banica, V. | |
dc.contributor.author | Vega, L. | |
dc.date.accessioned | 2020-02-19T16:46:35Z | |
dc.date.available | 2020-02-19T16:46:35Z | |
dc.date.issued | 2019-07-20 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/1080 | |
dc.description.abstract | The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. The flow is also related with the classical continuous Heisen- berg model in ferromagnetism, and the 1-D cubic Schr ̈odinger equation. We consider a class of solutions at the critical level of regularity that generate singularities in finite time. One of our main results is to prove the existence of a natural energy associated to these solutions. This energy remains constant except at the time of the formation of the singularity when it has a jump discontinuity. When interpreting this conservation law in the framework of fluid mechanics, it involves the amplitude of the Fourier modes of the variation of the direction of the vorticity. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Binormal Flow | en_US |
dc.subject | Energy of critical solutions | en_US |
dc.title | On the energy of critical solutions of the binormal flow | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2017-0718 | en_US |
dc.relation.projectID | EUS/BERC/BERC.2018-2021 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |