dc.contributor.author | Correia, S. | |
dc.contributor.author | Côte, R. | |
dc.contributor.author | Vega, L. | |
dc.date.accessioned | 2020-02-19T17:09:19Z | |
dc.date.available | 2020-02-19T17:09:19Z | |
dc.date.issued | 2019-04-09 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/1081 | |
dc.description.abstract | We prove a local well posedness result for the modified Korteweg-de Vries equa- tion in a critical space designed so that is contains self-similar solutions. As a consequence, we can study the flow of this equation around self-similar solutions: in particular, we give an as- ymptotic description of small solutions as t → +∞ and construct solutions with a prescribed blow up behavior as t → 0. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Self-similar dynamics for the modified Korteweg-de Vries equation | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2017-0718 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |