Show simple item record

dc.contributor.authorCorreia, S.
dc.contributor.authorCôte, R.
dc.contributor.authorVega, L. 
dc.date.accessioned2020-02-20T09:19:42Z
dc.date.available2020-02-20T09:19:42Z
dc.date.issued2018-07-06
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1083
dc.description.abstractWe give the asymptotics of the Fourier transform of self-similar solutions to the modified Korteweg-de Vries equation, through a fixed point argument in weighted W1,8 around a carefully chosen, two term ansatz. Such knowledge is crucial in the study of stability properties of the self-similar solutions for the modified Korteweg-de Vries flow. In the defocusing case, the self-similar profiles are solutions to the Painlevé II equation. Al- though they were extensively studied in physical space, no result to our knowledge describe their behavior in Fourier space. We are able to relate the constants involved in the description in Fourier space with those involved in the description in physical space.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleAsymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España