Show simple item record

dc.contributor.authorBanica, V.
dc.contributor.authorVega, L. 
dc.date.accessioned2020-02-20T16:13:28Z
dc.date.available2020-02-20T16:13:28Z
dc.date.issued2020-02-05
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1087
dc.description.abstractThe aim of this paper is threefold. First we display solutions of the cubic nonlinear Schr ̈odinger equation on R in link with initial data a sum of Dirac masses. Secondly we show a Talbot effect for the same equation. Finally we prove the existence of a unique solution of the binormal flow with datum a polygonal line. This equation is used as a model for the vortex filaments dynamics in 3-D fluids and superfluids. We also construct solutions of the binormal flow that present an intermittency phenomena. Finally, the solution we construct for the binormal flow is continued for negative times, yielding a geometric way to approach the continuation after blow-up for the 1-D cubic nonlinear Schr ̈odinger equation.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectVortex filamentsen_US
dc.subjectBinormal Flowen_US
dc.subjectnonlinear Schrödinger equationsen_US
dc.subjectSingular dataen_US
dc.subjecttalbot effecten_US
dc.titleEvolution of Polygonal Lines by the Binormal Flowen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/2PE/PGC2018-094528-B-I00en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleSpringer Nature Switzerland AG 2020en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España