Show simple item record

dc.contributor.authorLe, Q.
dc.contributor.authorNguyen, H.D.
dc.date.accessioned2020-03-04T13:45:38Z
dc.date.available2020-03-04T13:45:38Z
dc.date.issued2019-12-02
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1095
dc.description.abstractWe develop Denef-Loeser’s motivic integration to an equivariant version and use it to prove the full integral identity conjecture for regular functions. In comparison with Hartmann’s work, the equivariant Grothendieck ring defined in this article is more elementary and it yields the application to the conjecture.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectEquivariant motivic integration, motivic zeta function, motivic Milnor fibers, integral identity conjectureen_US
dc.titleEquivariant motivic integration and proof of the integral identity conjecture for regular functionsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doihttps://doi.org/10.1007/s00208-019-01940-2
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00208-019-01940-2en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleMathematische Annalenen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España