Show simple item record

dc.contributor.authorFernández E.en_US
dc.contributor.authorRoncal L.en_US
dc.date.accessioned2020-04-02T11:43:36Z
dc.date.available2020-04-02T11:43:36Z
dc.date.issued2020-02-13
dc.identifier.issn0926-2601
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1100
dc.description.abstractIn this note we will show a Calder\'on--Zygmund decomposition associated with a function $f\in L^1(\mathbb{T}^{\omega})$. The idea relies on an adaptation of a more general result by J. L. Rubio de Francia in the setting of locally compact groups. Some related results about differentiation of integrals on the infinite-dimensional torus are also discussed.en_US
dc.description.sponsorship2017 Leonardo grant for Researchers and Cultural Creators, BBVA Foundationen_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherPotential Analysisen_US
dc.relationES/1PE/SEV-2017-0718en_US
dc.relationES/1PE/MTM2017-82160-C2-1-Pen_US
dc.relationEUS/BERC/BERC.2018-2021en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectInfinite dimensional torusen_US
dc.subjectCalder\'on--Zygmund decompositionen_US
dc.subjectdifferentiation of integralsen_US
dc.subjectdifferentiation basisen_US
dc.subjectlocally compact groupsen_US
dc.titleA Decomposition of Calderón–Zygmund Type and Some Observations on Differentiation of Integrals on the Infinite-Dimensional Torusen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeinfo:eu-repo/semantics/publishedVersionen_US
dc.identifier.doi10.1007/s11118-019-09813-8
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11118-019-09813-8en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/embargoedAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/embargoedAccess