dc.contributor.author | Fernández, E. | |
dc.contributor.author | Roncal, L. | |
dc.date.accessioned | 2020-04-02T11:43:36Z | |
dc.date.available | 2020-04-02T11:43:36Z | |
dc.date.issued | 2020-02-13 | |
dc.identifier.issn | 0926-2601 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/1100 | |
dc.description.abstract | In this note we will show a Calder\'on--Zygmund decomposition associated with a function $f\in L^1(\mathbb{T}^{\omega})$. The idea relies on an adaptation of a more general result by J. L. Rubio de Francia in the setting of locally compact groups. Some related results about differentiation of integrals on the infinite-dimensional torus are also discussed. | en_US |
dc.description.sponsorship | 2017 Leonardo grant for Researchers and Cultural Creators, BBVA Foundation | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Infinite dimensional torus | en_US |
dc.subject | Calder\'on--Zygmund decomposition | en_US |
dc.subject | differentiation of integrals | en_US |
dc.subject | differentiation basis | en_US |
dc.subject | locally compact groups | en_US |
dc.title | A Decomposition of Calderón–Zygmund Type and Some Observations on Differentiation of Integrals on the Infinite-Dimensional Torus | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1007/s11118-019-09813-8 | |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11118-019-09813-8 | en_US |
dc.relation.projectID | ES/1PE/SEV-2017-0718 | en_US |
dc.relation.projectID | ES/1PE/MTM2017-82160-C2-1-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2018-2021 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | Potential Analysis | en_US |