Exact Constructions in the (Non-linear) Planar Theory of Elasticity: From Elastic Crystals to Nematic Elastomers
Date
2020-07Metadata
Show full item recordAbstract
In this article we deduce necessary and sufficient conditions for the presence of “Conti-type”, highly symmetric, exactly stress-free constructions in the geometrically non-linear, planar n-well problem, generalising results of Conti et al. (Proc R Soc A 73(2203):20170235, 2017). Passing to the limit $n\rightarrow\infty$, this allows us to treat solid crystals and nematic elastomer differential inclusions simultaneously. In particular, we recover and generalise (non-linear) planar tripole star type deformations which were experimentally observed in Kitano and Kifune (Ultramicroscopy 39(1–4):279–286, 1991), Manolikas and Amelinckx (Physica Status Solidi (A) 60(2):607–617, 1980; Physica Status Solidi (A) 61(1):179–188, 1980). Furthermore, we discuss the corresponding geometrically linearised problem.