Show simple item record

dc.contributor.authorPonce Vanegas F.en_US
dc.date.accessioned2020-05-11T13:08:34Z
dc.date.available2020-05-11T13:08:34Z
dc.date.issued2020-05
dc.identifier.issn2235-0616
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1105
dc.description.abstractElectrical Impedance Imaging would suffer a serious obstruction if two different conductivities yielded the same measurements of potential and current at the boundary. The Calderón’s problem is to decide whether the conductivity is indeed uniquely determined by the data at the boundary. In $\mathbb{R}^d$, for $d\ge 5$, we show that uniqueness holds when the conductivity is in $W^{1+\frac{d-5}{2p}+, p}(\Omega)$ for $d\le p<\infty$. This improves on recent results of Haberman, and of Ham, Kwon and Lee. The main novelty of the proof is an extension of Tao’s Bilinear Theorem.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherRevista Matemática Iberoamericanaen_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relationES/2PE/PGC2018-094528-B-I00en_US
dc.relationEUS/BERC/BERC.2018-2021en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectInverse Problemsen_US
dc.subjectCalderón’s Problemen_US
dc.subjectRestriction Theoryen_US
dc.subjectTao’s Bilinear Theoremen_US
dc.titleA Bilinear Strategy for Calderón’s Problemen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeinfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess