Show simple item record

dc.contributor.authorSükran G.en_US
dc.contributor.authorUria-Albizuri J.en_US
dc.date.accessioned2020-06-25T10:05:13Z
dc.date.available2020-06-25T10:05:13Z
dc.date.issued2020-04-14
dc.identifier.issn1661-7207
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1110
dc.description.abstractIf $G$ is a Grigorchuk-Gupta-Sidki group defined over a $p$-adic tree, where p is an odd prime, we study the existence of Beauville surfaces associated to the quotients of $G$ by its level stabilizers $st_G(n)$. We prove that if $G$ is periodic then the quotients $G/st_G(n)$ are Beauville groups for every $n\geq 2$ if $p\geq 5$ and $n\geq 3$ if $p=3$. On the other hand, if $G$ is non-periodic, then none of the quotients $G/st_G(n)$ are Beauville groups.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherGroups, Geometry, and Dynamicsen_US
dc.relationES/1PE/SEV-2017-0718en_US
dc.relationES/2PE/RTI2018-093860-B-C21en_US
dc.relationEUS/BERC/BERC.2018-2021en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectgroups acting on rooted treesen_US
dc.subjectBeauville surfacesen_US
dc.titleGrigorchuk-Gupta-Sidki groups as a source for Beauvile surfacesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeinfo:eu-repo/semantics/acceptedVersionen_US
dc.identifier.arxiv1803.04879


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess