Show simple item record

dc.contributor.authorKorotov S.
dc.contributor.authorKrizek M.
dc.date.accessioned2016-06-13T13:11:52Z
dc.date.available2016-06-13T13:11:52Z
dc.date.issued2014-12-31
dc.identifier.issn0898-1221
dc.identifier.urihttp://hdl.handle.net/20.500.11824/111
dc.description.abstractWe show that in dimensions higher than two, the popular "red refinement" technique, commonly used for simplicial mesh refinements and adaptivity in the finite element analysis and practice, never yields subsimplices which are all acute even for an acute father element as opposed to the two-dimensional case. In the three-dimensional case we prove that there exists only one tetrahedron that can be partitioned by red refinement into eight congruent subtetrahedra that are all similar to the original one.
dc.formatapplication/pdf
dc.languageeng
dc.publisherComputers and Mathematics with Applications
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/295217
dc.relationES/6PN/MTM2011-24766
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectComputational mechanics
dc.subjectFinite element method
dc.subjectAdaptivity
dc.subjectHigher-dimensional
dc.subjectMesh refinement
dc.subjectRed refinement
dc.subjectSommerville tetrahedron
dc.subjectSubtetrahedra
dc.subjectGeometry
dc.titleRed refinements of simplices into congruent subsimplices
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.identifier.doi10.1016/j.camwa.2014.01.025
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0898122114000662


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess