On nonobtuse refinements of tetrahedral finite element meshes
Abstract
It is known that piecewise linear continuous finite element (FE) approximations on nonobtuse tetrahedral FE meshes guarantee the validity of discrete analogues of various maximum principles for a wide class of elliptic problems of the second order. Such analogues are often called discrete maximum principles (or DMPs in short). In this work we present several global and local refinement techniques which produce nonobtuse conforming (i.e. face-to-face) tetrahedral partitions of polyhedral domains. These techniques can be used in order to compute more accurate FE approximations (on finer and/or adapted tetrahedral meshes) still satisfying DMPs.