Show simple item record

dc.contributor.authorKorotov, S.
dc.date.accessioned2016-06-13T13:11:52Z
dc.date.available2016-06-13T13:11:52Z
dc.date.issued2014-12-31
dc.identifier.urihttp://hdl.handle.net/20.500.11824/112
dc.description.abstractIt is known that piecewise linear continuous finite element (FE) approximations on nonobtuse tetrahedral FE meshes guarantee the validity of discrete analogues of various maximum principles for a wide class of elliptic problems of the second order. Such analogues are often called discrete maximum principles (or DMPs in short). In this work we present several global and local refinement techniques which produce nonobtuse conforming (i.e. face-to-face) tetrahedral partitions of polyhedral domains. These techniques can be used in order to compute more accurate FE approximations (on finer and/or adapted tetrahedral meshes) still satisfying DMPs.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleOn nonobtuse refinements of tetrahedral finite element meshesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleProceedings of International Conference MASCOT2012 / ISGG2012, Las Palmas, Spain, 2014en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España