Evolving Gaussian Process Kernels for Translation Editing Effort Estimation

Data
2019Laburpena
In many Natural Language Processing problems the combination of machine learning and optimization techniques is essential. One of these problems is estimating the effort required to improve, under direct human supervision, a text that has been translated using a machine translation method. Recent developments in this area have shown that Gaussian Processes can be accurate for post-editing effort prediction. However, the Gaussian Process kernel has to be chosen in advance, and this choice in- fluences the quality of the prediction. In this paper, we propose a Genetic Programming algorithm to evolve kernels for Gaussian Processes. We show that the combination of evolutionary optimization and Gaussian Processes removes the need for a-priori specification of the kernel choice, and achieves predictions that, in many cases, outperform those obtained with fixed kernels.