Show simple item record

dc.contributor.authorHannukainen, A.
dc.contributor.authorKorotov, S.
dc.contributor.authorKrizek, M.
dc.date.accessioned2016-06-13T13:11:52Z
dc.date.available2016-06-13T13:11:52Z
dc.date.issued2014-12-31
dc.identifier.issn0167-6423
dc.identifier.urihttp://hdl.handle.net/20.500.11824/113
dc.description.abstractThe finite element method usually requires regular or strongly regular families of partitions in order to get guaranteed a priori or a posteriori error estimates. In this paper we examine the recently invented longest-edge bisection algorithm that always produces only face-to-face simplicial partitions. First, we prove that the regularity of the family of partitions generated by this algorithm is equivalent to its strong regularity in any dimension. Second, we present a number of 3d numerical tests, which demonstrate that the technique seems to produce regular (and therefore strongly regular) families of tetrahedral partitions. However, a mathematical proof of this statement is still an open problem.
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectFinite element method
dc.subjectA-posteriori error estimates
dc.subjectBisection algorithms
dc.subjectConforming finite element method
dc.subjectLongest edge
dc.subjectMathematical proof
dc.subjectNumerical tests
dc.subjectStrong regularities
dc.subjectAlgorithms
dc.titleOn numerical regularity of the face-to-face longest-edge bisection algorithm for tetrahedral partitionsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1016/j.scico.2013.05.002
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0167642313001226
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleScience of Computer Programmingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España