General supervision via probabilistic transformations
Fecha
2020-08-01Metadatos
Mostrar el registro completo del ítemResumen
Different types of training data have led to numerous schemes for supervised classification. Current learning techniques are tailored to one specific scheme and cannot handle general ensembles of training samples. This paper presents a unifying framework for supervised classification with general ensembles of training samples, and proposes the learning methodology of generalized robust risk minimization (GRRM). The paper shows how current and novel supervision schemes can be addressed under the proposed framework by representing the relationship between examples at prediction and training via probabilistic transformations. The results show that GRRM can handle different types of training samples in a unified manner, and enable new supervision schemes that aggregate general ensembles of training samples.