Show simple item record

dc.contributor.authorDi Plinio, F.
dc.contributor.authorLi, K.
dc.contributor.authorMartikainen, H.
dc.contributor.authorVuorinen, E.
dc.description.abstractWe prove Lp bounds for the extensions of standard multilinear Calderón- Zygmund operators to tuples of UMD spaces tied by a natural product structure. The product can, for instance, mean the pointwise product in UMD function lattices, or the composition of operators in the Schatten-von Neumann subclass of the algebra of bounded operators on a Hilbert space. We do not require additional assumptions beyond UMD on each space – in contrast to previous results, we e.g. show that the Rademacher maximal function property is not necessary. The obtained generality allows for novel applications. For instance, we prove new versions of fractional Leibniz rules via our results concerning the boundedness of multilinear singular integrals in non-commutative Lp spaces. Our proof techniques combine a novel scheme of induction on the multilinearity index with dyadic-probabilistic techniques in the UMD space setting.en_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.subjectUMD spaces.en_US
dc.subjectrepresentation theoremsen_US
dc.subjectnon- commutative spacesen_US
dc.subjectmultilinear analysisen_US
dc.subjectsingular integralsen_US
dc.subjectCalderón–Zygmund operatorsen_US
dc.titleMultilinear singular integrals on non-commutative lp spacesen_US
dc.journal.titleSpringer International Publishingen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España