Manufacturing of screw rotors via 5-axis double-flank CNC machining
Abstract
We investigate a recently introduced methodology for 5-axis flank computer numerically controlled (CNC) machining, called double-flank milling [1]. We show that screw rotors are well suited for this manufacturing approach where the milling tool possesses tangential contact with the material block on two sides, yielding a more efficient variant of traditional flank milling. While the tool's motion is determined as a helical motion, the shape of the tool and its orientation with respect to the helical axis are unknowns in our optimization-based approach. We demonstrate our approach on several rotor benchmark examples where the pairs of envelopes of a custom-shaped tool meet high machining accuracy.