• English
    • euskara
    • español
  • English 
    • English
    • euskara
    • español
  • Login
Search 
  •   BIRD Home
  • Data Science (DS)
  • Machine Learning
  • Search
  •   BIRD Home
  • Data Science (DS)
  • Machine Learning
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-10 of 113

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Implementing the Cumulative Difference Plot in the IOHanalyzer 

Arza, E.Autoridad BCAM; Ceberio, J.; Irurozki, E.; Pérez, A.Autoridad BCAM (2022-07)
The IOHanalyzer is a web-based framework that enables an easy visualization and comparison of the quality of stochastic optimization algorithms. IOHanalyzer offers several graphical and statistical tools analyze the results ...
Thumbnail

Generalized Maximum Entropy for Supervised Classification 

Mazuelas, S.Autoridad BCAM; Shen, Y.; Pérez, A.Autoridad BCAM (2022-04)
The maximum entropy principle advocates to evaluate events’ probabilities using a distribution that maximizes entropy among those that satisfy certain expectations’ constraints. Such principle can be generalized for ...
Thumbnail

Time Series Classifier Recommendation by a Meta-Learning Approach 

Abanda, A.Autoridad BCAM; Mori, U.; Lozano, J.A.Autoridad BCAM (2022-03-26)
This work addresses time series classifier recommendation for the first time in the literature by considering several recommendation forms or meta-targets: classifier accuracies, complete ranking, top-M ranking, best set ...
Thumbnail

EDA++: Estimation of Distribution Algorithms with Feasibility Conserving Mechanisms for Constrained Continuous Optimization 

Shirazi, A.Autoridad BCAM; Ceberio, J.; Lozano, J.A.Autoridad BCAM (2022-02-25)
Handling non-linear constraints in continuous optimization is challenging, and finding a feasible solution is usually a difficult task. In the past few decades, various techniques have been developed to deal with linear ...
Thumbnail

A Deep Learning Approach for Generating Soft Range Information from RF Data 

li, Y.; Mazuelas, S.Autoridad BCAM; Shen, Y. (2022-01-24)
Radio frequency (RF)-based techniques are widely adopted for indoor localization despite the challenges in extracting sufficient information from measurements. Soft range information (SRI) offers a promising alternative ...
Thumbnail

Derivation of a Cost-Sensitive COVID-19 Mortality Risk Indicator Using a Multistart Framework 

Armañanzas, R.Autoridad BCAM; Diaz, A.Autoridad BCAM; Martinez, M.; Mazuelas, S.Autoridad BCAM (2022-01-14)
The overall global death rate for COVID-19 patients has escalated to 2.13% after more than a year of worldwide spread. Despite strong research on the infection pathogenesis, the molecular mechanisms involved in a fatal ...
Thumbnail

A Multivariate Time Series Streaming Classifier for Predicting Hard Drive Failures [Application Notes] 

Ircio, J.; Lojo, A.; Mori, U.; Lozano, J.A.Autoridad BCAM (2022)
Digital data storage systems such as hard drives can suffer breakdowns that cause the loss of stored data. Due to the cost of data and the damage that its loss entails, hard drive failure prediction is vital. In this ...
Thumbnail

Analysis of Dominant Classes in Universal Adversarial Perturbations 

Vadillo, J.; Santana, R.; Lozano, J.A.Autoridad BCAM (2022)
The reasons why Deep Neural Networks are susceptible to being fooled by adversarial examples remains an open discussion. Indeed, many differ- ent strategies can be employed to efficiently generate adversarial attacks, some ...
Thumbnail

Rank aggregation for non-stationary data streams 

Irurozki, E.; Pérez, A.Autoridad BCAM; Lobo, J.L.; Del Ser, J.Autoridad BCAM (2022)
The problem of learning over non-stationary ranking streams arises naturally, particularly in recommender systems. The rankings represent the preferences of a population, and the non-stationarity means that the distribution ...
Thumbnail

A Semi-Supervised Learning Approach for Ranging Error Mitigation Based on UWB Waveform 

Li, Y.; Mazuelas, S.Autoridad BCAM; Shen, Y. (2021-12-30)
Localization systems based on ultra-wide band (UWB) measurements can have unsatisfactory performance in harsh environments due to the presence of non-line-of-sight (NLOS) errors. Learning-based methods for error ...
  • 1
  • 2
  • 3
  • 4
  • . . .
  • 12

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

AuthorLozano, J.A. (64)Pérez, A. (27)Ceberio, J. (21)Mendiburu, A. (15)Mazuelas, S. (14)Santana, R. (12)Inza, I. (10)Irurozki, E. (10)Shirazi, A. (9)Del Ser, J. (8)... másSubjectAerospace Engineering (8)Evolutionary Algorithm (7)Optimization (7)Spacecraft (7)Supervised classification (4)Estimation of Distribution Algorithms (3)K-means (3)K-means++ (3)machine learning (3)optimization (3)... másFecha2022 (9)2021 (20)2020 (16)2019 (23)2018 (16)2017 (16)2016 (10)2015 (3)

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback