Show simple item record

dc.contributor.authorCanto, J.
dc.contributor.authorPérez, C.
dc.date.accessioned2021-01-27T16:45:25Z
dc.date.available2021-01-27T16:45:25Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1243
dc.description.abstractThe John–Nirenberg theorem states that functions of bounded mean oscillation are exponentially integrable. In this article we give two extensions of this theorem. The first one relates the dyadic maximal function to the sharp maximal function of Fefferman–Stein, while the second one concerns local weighted mean oscillations, generalizing a result of Muckenhoupt and Wheeden. Applications to the context of generalized Poincaré type inequalities and to the context of the $C_p$ class of weights are given. Extensions to the case of polynomial BMO type spaces are also given.en_US
dc.description.sponsorshipBasque Government: IT1247-19 and "Ayuda para la formación de personal investigador no doctor"en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleExtensions of the John-Nirenberg theorem and applicationsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/1PE/MTM2017-82160-C2-1-Pen_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleProceedings of the American Mathematical Societyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España