Show simple item record

dc.contributor.authorKumar, S.
dc.contributor.authorPonce-Vanegas, F.
dc.contributor.authorVega, L. 
dc.date.accessioned2021-03-09T07:25:19Z
dc.date.available2021-03-09T07:25:19Z
dc.date.issued2021-03
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1255
dc.description.abstractWe study the process of dispersion of low-regularity solutions to the Schrödinger equation using fractional weights (observables). We give another proof of the uncertainty principle for fractional weights and use it to get a lower bound for the concentration of mass. We consider also the evolution when the initial datum is the Dirac comb in $\mathbb{R}$. In this case we find fluctuations that concentrate at rational times and that resemble a realization of a Lévy process. Furthermore, the evolution exhibits multifractality.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectSchrödinger equationen_US
dc.subjectMultifractalityen_US
dc.subjectUncertainty Principleen_US
dc.subjectTabot Effecten_US
dc.titleStatic and Dynamical, Fractional Uncertainty Principlesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/2PE/PGC2018-094528-B-I00en_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España