Show simple item record

dc.contributor.authorDeng, Y.
dc.contributor.authorZillinger, C.
dc.date.accessioned2021-08-04T13:36:52Z
dc.date.available2021-08-04T13:36:52Z
dc.date.issued2021-07-30
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1315
dc.description.abstractIn this article we show that the Euler equations, when linearized around a low frequency perturbation to Couette flow, exhibit norm inflation in Gevrey-type spaces as time tends to infinity. Thus, echo chains are shown to be a (secondary) linear instability mechanism. Furthermore, we develop a more precise analysis of cancellations in the resonance mechanism, which yields a modified exponent in the high frequency regime. This allows us, in addition, to remove a logarithmic constraint on the perturbations present in prior works by Bedrossian, Deng and Masmoudi, and to construct solutions which are initially in a Gevrey class for which the velocity asymptotically converges in Sobolev regularity but diverges in Gevrey regularity.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleEcho Chains as a Linear Mechanism: Norm Inflation, Modified Exponents and Asymptoticsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doihttps://doi.org/10.1007/s00205-021-01697-6en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España