dc.contributor.author | Kenig, C. E. | |
dc.contributor.author | Ponce, G. | |
dc.contributor.author | Vega, L. | |
dc.date.accessioned | 2021-10-14T19:00:59Z | |
dc.date.available | 2021-10-14T19:00:59Z | |
dc.date.issued | 2020-03-15 | |
dc.identifier.issn | 00221236 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/1347 | |
dc.description.abstract | We prove that if u1,u2 are real solutions of the Benjamin-Ono equation defined in (x,t)∈R×[0,T] which agree in an open set Ω⊂R×[0,T], then u1≡u2. We extend this uniqueness result to a general class of equations of Benjamin-Ono type in both the initial value problem and the initial periodic boundary value problem. This class of 1-dimensional non-local models includes the intermediate long wave equation. We relate our uniqueness results with those for a water wave problem. Finally, we present a slightly stronger version of our uniqueness results for the Benjamin-Ono equation. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Benjamin-Ono equation | en_US |
dc.subject | Unique continuation | en_US |
dc.title | Uniqueness properties of solutions to the Benjamin-Ono equation and related models | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1016/j.jfa.2019.108396 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2017-0718 | en_US |
dc.relation.projectID | EUS/BERC/BERC.2018-2021 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | Journal of Functional Analysis | en_US |
dc.volume.number | 278 | en_US |
dc.issue.number | 5 | en_US |