Show simple item record

dc.contributor.authorKenig, C. E.
dc.contributor.authorPonce, G.
dc.contributor.authorVega, L. 
dc.date.accessioned2021-10-14T19:00:59Z
dc.date.available2021-10-14T19:00:59Z
dc.date.issued2020-03-15
dc.identifier.issn00221236
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1347
dc.description.abstractWe prove that if u1,u2 are real solutions of the Benjamin-Ono equation defined in (x,t)∈R×[0,T] which agree in an open set Ω⊂R×[0,T], then u1≡u2. We extend this uniqueness result to a general class of equations of Benjamin-Ono type in both the initial value problem and the initial periodic boundary value problem. This class of 1-dimensional non-local models includes the intermediate long wave equation. We relate our uniqueness results with those for a water wave problem. Finally, we present a slightly stronger version of our uniqueness results for the Benjamin-Ono equation.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectBenjamin-Ono equationen_US
dc.subjectUnique continuationen_US
dc.titleUniqueness properties of solutions to the Benjamin-Ono equation and related modelsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1016/j.jfa.2019.108396en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleJournal of Functional Analysisen_US
dc.volume.number278en_US
dc.issue.number5en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España