Show simple item record

dc.contributor.authorAbanda, A. 
dc.date.accessioned2022-01-14T13:40:29Z
dc.date.available2022-01-14T13:40:29Z
dc.date.issued2021-11-16
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1415
dc.description.abstractThis thesis includes 3 contributions of different types to the area of supervised time series classification, a growing field of research due to the amount of time series collected daily in a wide variety of domains. In this context, the number of methods available for classifying time series is increasing, and the classifiers are becoming more and more competitive and varied. Thus, the first contribution of the thesis consists of proposing a taxonomy of distance-based time series classifiers, where an exhaustive review of the existing methods and their computational costs is made. Moreover, from the point of view of a non-expert user (even from that of an expert), choosing a suitable classifier for a given problem is a difficult task. The second contribution, therefore, deals with the recommendation of time series classifiers, for which we will use a meta-learning approach. Finally, the third contribution consists of proposing a method to explain the prediction of time series classifiers, in which we calculate the relevance of each region of a series in the prediction. This method of explanation is based on perturbations, for which we will consider specific and realistic transformations for the time series.en_US
dc.description.sponsorshipBES-2016-076890en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectTime series classification, distance based, meta-learning, explainabilityen_US
dc.titleContributions to Time Series Classification: Meta-Learning and Explainabilityen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/1PE/TIN2017-82626-Ren_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.relation.projectIDEUS/ELKARTEKen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España