dc.contributor.author | Li, Y | |
dc.contributor.author | Mazuelas, S. | |
dc.contributor.author | Shen, Y. | |
dc.date.accessioned | 2022-03-09T08:35:17Z | |
dc.date.available | 2022-03-09T08:35:17Z | |
dc.date.issued | 2021-12-30 | |
dc.identifier.issn | 2155-7586 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/1444 | |
dc.description.abstract | Ultra-wideband (UWB)-based techniques, while becoming
mainstream approaches for high-accurate positioning,
tend to be challenged by ranging bias in harsh environments.
The emerging learning-based methods for error mitigation have
shown great performance improvement via exploiting high semantic
features from raw data. However, these methods rely
heavily on fully labeled data, leading to a high cost for data
acquisition. We present a learning framework based on weak
supervision for UWB ranging error mitigation. Specifically,
we propose a deep learning method based on the generalized
expectation-maximization (GEM) algorithm for robust UWB
ranging error mitigation under weak supervision. Such method
integrate probabilistic modeling into the deep learning scheme,
and adopt weakly supervised labels as prior information. Extensive
experiments in various supervision scenarios illustrate the
superiority of the proposed method. | en_US |
dc.description.sponsorship | Ramon y Cajal Grant RYC-2016-19383 | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | UWB radio, ranging error mitigation, weakly supervised Learning, generalized expectation-maximization algorithm, deep learning | en_US |
dc.title | Deep GEM-based network for weakly supervised UWB ranging error mitigation | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.identifier.doi | 10.1109/MILCOM52596.2021.9653015 | en_US |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9653015 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105058GA-I00 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno Vasco/ELKARTEK | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM) | en_US |