Show simple item record

dc.contributor.authorCayama, J.
dc.contributor.authorCuesta, C.M.
dc.contributor.authorDe la Hoz, F.
dc.date.accessioned2022-03-17T16:24:58Z
dc.date.available2022-03-17T16:24:58Z
dc.date.issued2021-01-15
dc.identifier.issn00963003
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1453
dc.description.abstractIn this paper, we propose a novel pseudospectral method to approximate accurately and efficiently the fractional Laplacian without using truncation. More precisely, given a bounded regular function defined over R, we map the unbounded domain into a finite one, and represent the resulting function as a trigonometric series. Therefore, the central point of this paper is the computation of the fractional Laplacian of an elementary trigonometric function. As an application of the method, we also do the simulation of Fisher's equation with fractional Laplacian in the monostable case.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectAccelerating frontsen_US
dc.subjectFractional Laplacianen_US
dc.subjectNonlocal Fisher's equationen_US
dc.subjectPseudospectral methodsen_US
dc.subjectRational Chebyshev functionsen_US
dc.titleA pseudospectral method for the one-dimensional fractional Laplacian on Ren_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1016/j.amc.2020.125577en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US
dc.journal.titleApplied Mathematics and Computationen_US
dc.volume.number389en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España