Show simple item record

dc.contributor.authorEceizabarrena, D.
dc.date.accessioned2022-03-17T16:29:39Z
dc.date.available2022-03-17T16:29:39Z
dc.date.issued2021-01-01
dc.identifier.issn00029947
dc.identifier.urihttp://hdl.handle.net/20.500.11824/1454
dc.description.abstractRecent findings show that the classical Riemann's non-differentiable function has a physical and geometric nature as the irregular trajectory of a polygonal vortex filament driven by the binormal flow. In this article, we give an upper estimate of its Hausdorff dimension. We also adapt this result to the multifractal setting. To prove these results, we recalculate the asymptotic behavior of Riemann's function around rationals from a novel perspective, underlining its connections with the Talbot effect and Gauss sums, with the hope that it is useful to give a lower bound of its dimension and to answer further geometric questions.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleOn the Hausdorff dimension of Riemann's non-differentiable functionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1090/tran/8489en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US
dc.journal.titleTransactions of the American Mathematical Societyen_US
dc.volume.number374en_US
dc.issue.number11en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España