Show simple item record

dc.contributor.authorBo, P.
dc.contributor.authorFan, H.
dc.contributor.authorBarton, M.
dc.description.abstractA novel method for trochoidal flank milling of 3D cavities bounded by free-form surfaces is proposed. Existing 3D trochoidal milling methods use on-market milling tools whose shape is typically cylindrical or conical, and is therefore not well-suited for meeting fine milling tolerances required for finishing of benchmark free-form surfaces like blades or blisks. In contrast, our variational framework incorporates the shape of the tool into the optimization cycle and looks not only for the trochoidal milling paths, but also for the shape of the tool itself. High precision quality is ensured by firstly designing flank milling paths for the side surfaces that delimit the motion space, in which the trochoidal milling paths are further computed. Additionally, the material removal rate is maximized with the cutter-workpiece engagement being constrained under a given tolerance. Our framework also supports multi-layer approach that is necessary to handle deep cavities. The ability and efficacy of the proposed method are demonstrated by several industrial benchmarks, showing that our approach meets fine machining tolerances using only a few trochoidal paths.en_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.subject5-axis CNC machiningen_US
dc.subjecttrochoidal millingen_US
dc.subjectcustom-shaped toolsen_US
dc.subjectroughing operationsen_US
dc.subjecttangential movabilityen_US
dc.subjectfree-form shape manufacturingen_US
dc.titleEfficient 5-axis CNC trochoidal flank milling of 3D cavities using custom-shaped cutting toolsen_US
dc.journal.titleComputer-Aided Designen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España